[en] This paper proposes an algorithm for the numerical simulation of linear structural dynamics problems under unilateral elastic constraints, i.e., constraints with a linear force/displacement characteristic whenever active. The presented procedure relies on an event-driven strategy for the handling of the contact constraints, in combination with one-step schemes dedicated to the time integration of the second-order equations of motion. Efficiency of the procedure follows from the use of cubic Hermite interpolation to continuously extend the normal gap functions that reflect the openings of the contact interfaces. Robustness follows from the proper handling of complex numerical situations, e.g., numerical grazing or discontinuity sticking, through appropriate algorithm structure and numerical implementation. And, integration stability is guaranteed by the very nature of the algorithm and that of the one-step integration scheme. Following a detailed coverage of the integration procedure and the countermeasures to the expected numerical difficulties, three application examples are treated for illustration purposes. A MATLAB implementation of the procedure is provided online; download and usage information are given in the Appendix.
Disciplines :
Computer science
Author, co-author :
Depouhon, Alexandre ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Detournay, Emmanuel; University of Minnesota > Civil Engineering > Geomechanics > Full Professor
Denoël, Vincent ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Language :
English
Title :
Event-driven integration of linear structural dynamics models under unilateral elastic constraints
Publication date :
July 2014
Journal title :
Computer Methods in Applied Mechanics and Engineering
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Kikuchi N., Oden J.T. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods 1981, Society for Industrial and Applied Mathematics.
Wriggers P. Computational Contact Mechanics 2006, John Wiley and Sons, Ltd.
Acary V. Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and coulomb's friction. Comput. Methods Appl. Mech. Eng. 2013, 256(0):224-250. 10.1016/j.cma.2012.12.012.
Armero F., Petocz E. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 1998, 158(3-4):269-300. 10.1016/S0045-7825(97)00256-9.
Doyen D., Ern A., Piperno S. Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 2011, 33(1):223-249. 10.1137/100791440.
Lundberg B. Energy transfer in percussive rock destruction - II: Supplement on hammer drilling. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1973, 10(5):401-419. 10.1016/0148-9062(73)90025-9.
Karlsson L., Lundberg B., Sundin K. Experimental study of a percussive process for rock fragmentation. Int. J. Rock Mech. Miner. Sci. Geomech. Abstr. 1989, 26(1):45-50. 10.1016/0148-9062(89)90524-X.
Depouhon A., Denoël V., Detournay E. A drifting impact oscillator with periodic impulsive loading: application to percussive drilling. Phys. D: Nonlinear Phenom. 2013, 258:1-10. 10.1016/j.physd.2013.04.012.
Leine R.I., Nijmeijer H. Dynamics and Bifurcations of Non-Smooth Mechanical systems 2004, Springer-Verlag.
Acary V., Brogliato B. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics 2008, Springer-Verlag.
Dieci L., Lopez L. A survey of numerical methods for IVPS of odes with discontinuous right-hand side. J. Comput. Appl. Math. 2012, 236(16):3967-3991.
Filippov A.F. Differential Equations with Discontinuous Righthand Sides. Mathematics and its Applications 1988, Kluwer Academic Publishers.
Goebel R., Sanfelice R.G., Teel A.R. Hybrid dynamical systems. IEEE Control Syst. 2009, 29(2):28-93. 10.1109/MCS.2008.931718.
Dankowicz H., Schilder F. Recipes for Continuation 2013, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
di Bernardo M., Budd C.J., Champneys A.R., Kowalczyk P. Piecewise-smooth dynamical systems: theory and applications. Applied Mathematical Science 2008, vol. 163. Springer-Verlag, London, London.
Schindler T., Acary V. Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook. Math. Comput. Simul. 2014, 95(0):180-199. 10.1016/j.matcom.2012.04.012.
Nguyen N.-S., Brogliato B. Shock dynamics in granular chains: numerical simulations and comparison with experimental tests. Granul. Matter 2012, 14(3):341-362. 10.1007/s10035-012-0338-z.
B. Besselink, N. van de Wouw, H. Nijmeijer, A semi-analytical study of stick-slip oscillations in drilling systems, J. Comput. Nonlinear Dyn. 6 (2). doi:10.1115/1.4002386.
Pfeiffer F., Foerg M., Ulbrich H. Numerical aspects of non-smooth multibody dynamics. Comput. Methods Appl. Mech. Eng. 2006, 195(50-51):6891-6908. 10.1016/j.cma.2005.08.012.
N. Huggett, Zeno's Paradoxes, The Stanford Encyclopedia of Philosophy (Winter 2010 Edition). URL http://plato.stanford.edu/archives/win2010/entries/paradox-zeno/.
L.F. Shampine, M.W. Reichelt, The MATLAB ODE Suite, SIAM J. Sci. Comput. 18. doi:10.1137/S1064827594276424.
Carver M.B. Efficient integration over discontinuities in ordinary differential equation simulations. Math. Comput. Simul. 1978, 20:190-196. 10.1016/0378-4754(78)90068-X.
Ellison D. Efficient automatic integration of ordinary differential equations with discontinuities. Math. Comput. Simul. 1981, 23:12-20. 10.1016/0378-4754(81)90003-3.
J.M. Esposito, V. Kumar, A state event detection algorithm for numerically simulating hybrid systems with model singularities, ACM Trans. Model. Comput. Simul. 17 (1). doi:10.1145/1189756.1189757.
Park T., Barton P.I. State event location in differential-algebraic models. ACM Trans. Model. Comput. Simul. 1996, 6(2):137-165. 10.1145/232807.232809.
Shampine L.F., Gladwell I., Brankin R.W. Reliable solution of special event location-problems for ODEs. ACM Trans. Math. Software 1991, 17(1):11-25. 10.1145/103147.103149.
Newmark N.M. A method of computation for structural dynamics. J. Eng. Mech. ASCE 1959, 85(EM3):67-94.
Hughes T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis 1987, Dover.
Chung J., Hulbert G.M. Time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. Trans. ASME 1993, 60(2):371-375. 10.1115/1.2900803.
Géradin M., Rixen D. Mechanical Vibrations: Theory and Application to Structural Dynamics 1997, Wiley.
Armero F., Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: Second-order methods. Comput. Methods Appl. Mech. Eng. 2001, 190(51-52):6783-6824. 10.1016/S0045-7825(01)00233-X.
A. Depouhon, E. Detournay, V. Denoël, Accuracy of one-step integration schemes for damped/forced linear structural dynamics, Int. J. Numer. Methods Eng. (accepted for publication). doi:10.1002/nme.4680.
M. Payr, An experimental and theoretical study of perfect multiple contact collisions in bodies (Ph.D. thesis), ETH Zürich, 2008.
MATLAB R2013a, The MathWorks, Inc., Natick, MA, United States.
Quarteroni A., Sacco R., Saleri F. Numerical Mathematics 2007, vol. 37. Springer-Verlag.
Noh G., Bathe K.-J. An explicit time integration scheme for the analysis of wave propagations. Comput. Struct. 2013, 129(0):178-193. 10.1016/j.compstruc.2013.06.007.
Nsiampa N., Ponthot J.-P., Noels L. Comparative study of numerical explicit schemes for impact problems. Int. J. Impact Eng. 2008, 35(12):1688-1694. 10.1016/j.ijimpeng.2008.07.003.
Sturm J.C.F. Mémoire sur la résolution des équations numériques. Bull. Sci. Férussac 1829, 11:419-425.
F. Boulier, Systèmes polynomiaux: que signifie "résoudre"? Online lecture notes - Consulted on 14-Oct-13, 2010. URL http://www.lifl.fr/boulier/polycopies/resoudre.pdf.
Suzuki M., Sasaki T. On Sturm sequence with floating-point number coefficients. RIMS Kokyuroku 1989, 685:1-14. http://hdl.handle.net/2433/101222.
Corless R.M., Shakoori A., Aruliah D.A., Gonzalez-Vega L. Barycentric hermite interpolants for event location in initial-value problems. J. Numer. Anal. Ind. Appl. Math. 2007, 1:1-14.
Kopp J. Efficient numerical diagonalization of hermitian 3×3 matrices. Int. J. Mod. Phys. C 2008, 19:523-548. 10.1142/S0129183108012303.
Birta L.G., Oren T.I., Kettenis D.L. A robust procedure for discontinuity handling in continuous system simulation. Trans. Soc. Comput. Simul. Int. 1985, 2(3):189-205.
Bahl V., Linninger A.A. Modeling of continuous-discrete processes. Lecture Notes in Computer Science 2001, vol. 2034:387-402. Springer, Berlin, Heidelberg. 10.1007/3-540-45351-2_32. M.D. Benedetto, A. Sangiovanni-Vincentelli (Eds.).
Graff K.F. Wave Motion in Elastic Solids 1975, Dover.
Clough R., Penzien J. Dynamics of Structures 1993, McGraw-Hill.
EN1998 - EUROCODE 8: Design of structures for earthquake resistance, 2004.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.