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0. Nomenclature4

Conventions apply throughout the paper.5

• Vectors and matrices are denoted by bold lower and upper case characters, e.g., v ∈ Rm = Rm×16

and M ∈ Rm×n.7

• Indices i, j are used to denote component extraction from vectors and matrices8

– vi refers to the ith entry of vector v;9

– Mi denotes the ith column of matrix M;10

– Mij indicates the scalar entry of matrix M located at row i and column j.11

• Indices k, n indicate indexation with respect to time, i.e., xk := x(tk), xn := x(tn).12

• Indices a, b refer to body identification in multibody systems.13

• Calligraphic letters are used to denote compact integer sets. For instance, the set of indices 1 to q14

is referred to as C = {1, · · · , q}.15

• We write the vertical concatenation of column vectors as x = [a ; b].16

1. Introduction17

The development of methods for the numerical handling of unilateral constraints in a dynamic setting18

is of the highest interest for modeling today’s complex engineering applications. Fruits of intense research19

activities in computational mechanics, several approaches have been proposed. Each of them aims at20

guaranteeing the quality/accuracy, the robustness and the stability of the integration procedure, in21

the most efficient manner. Two main families of methods are designed for the handling of unilateral22

constraints [1]: formulations that exactly enforce the non-interpenetration condition between contacting23

surfaces, e.g., methods relying on Lagrange multipliers [2] or time-stepping schemes [3], and penalty-24

based methods that relax it by introducing a constitutive contact model relating the interpenetration to25

the contact force [4]. Covering both families, Doyen et al. [5] propose a review of several methods, as26

applied to the dynamic Signorini problem; that is, the 1-dimensional longitudinal impact of an elastic27

bar against a rigid wall.28

This paper is concerned with the problem of handling unilateral elastic constraints in combination29

with linear dynamics problems (but for the contact interaction). Such constraints arise, for instance,30

from the use of a quadratic potential to penalize body interpenetration. They also show up in the31

modeling of percussive drilling—the main driver to this research—to represent the bit/rock interaction32

Preprint submitted to Elsevier May 21, 2014



law [6, 7, 8]. However, in the latter problem, their (de)activation is not solely driven by the normal gap1

(distance between the contact interfaces), but also by functions depending on the velocity field [8]. With2

that application in mind, event-driven integration imposes itself as the ad hoc integration procedure.3

Although it can be interpreted as a form of active set strategy for the handling of contact constraints,4

the use of event-driven schemes is nonetheless more to be found in the fields of non-smooth dynamics5

and hybrid (switched) systems rather than in computational contact mechanics [9, 10, 11].6

With a growing interest for these disciplines over the last decades, substantial contributions have been7

made on the theoretical and numerical aspects, e.g., the pioneering work of Filippov [12] on discontinuous8

ordinary differential equations (ODEs) or the extensive review tutorial on hybrid dynamical systems by9

Göbel et al. [13]. This growing research momentum has also led to the development of software simulation10

packages, such as INRIA’s SICONOS simulation framework for the time integration of mechanical systems11

subject to unilateral contacts and Coulomb friction [14] or the Computational Continuation Core (COCO)12

for the continuation of non-smooth problems developed by Dankowicz and co-workers [15]. However, to13

the authors’ knowledge, there are no dedicated algorithms or software packages for the time integration14

of linear structural dynamics problems under unilateral elastic constraints that can be easily extended15

to trigger functions that depend on the velocity field, which motivates the present research work.16

Particular to non-smooth systems is the occurrence of events along the system trajectory. At these17

specific points, the trajectory loses smoothness and can even exhibit discontinuities in the presence of18

reset maps [16, Chap. 2], thereby yielding a piecewise smooth trajectory. Examples of such events are, for19

instance, the impacts of a bouncing ball [17], the collisions between granular particles [18], or the switches20

between sticking and sliding phases in systems subject to friction [19]. Event-driven integration schemes21

are integration procedures [9, 10, 11] that capture the exact instants (up to a numerical tolerance) at which22

these events take place. They enable a simple treatment of the sequential combination of continuous-time23

and discrete-time dynamics that arise in hybrid systems, such as switches between governing equations24

during integration. Although very accurate and versatile (any standard integration scheme with root-25

solving can be used), these procedures can, nevertheless, become time-consuming should the density of26

events be important along the system trajectory [17, 20], as is the case when constraint chatter takes27

place. They can even fail in case the system exhibits Zeno behavior, i.e., an infinite number of events28

in finite time; the naming convention follows from Zeno’s paradoxes [21]. Also, these procedures can be29

the subject of accuracy and robustness issues if the numerical tolerances with which event localization30

is performed are inadequately chosen [17].31

The root-solving capability, or the capacity of an integration scheme to locate during the procedure32

the zeros of state- and time-dependent algebraic equations defining events, is a standard feature on most33

solver packages for systems of first-order ODEs, e.g., [22]. Several approaches exist [23, 24, 25] but,34

mostly, advanced solvers exploit a continuous extension of the discrete solution to detect and localize35

events: a polynomial approximating with sufficient accuracy the continuous solution on the basis of the36

discrete one is constructed and used for event detection and localization [26, 27]. These prove best at37

balancing the responses to the two main challenges faced by root-solving [27]: robustness and efficiency.38

Procedures must indeed guarantee that events shall not be overlooked and that their localization can39

be performed with a reasonable computational effort. Nonetheless, to our best knowledge, no such40

continuous extensions exist for the schemes dedicated to the integration of the second-order equations41

of motion arising in mechanics, such as the well-known Newmark [28] and α-like methods [29, 30, 31].42

Embedding these schemes in event-driven integration procedures therefore requires the extension of root-43

solving techniques.44

The main purpose of this paper is the establishment of a numerical procedure for the time integration45

of linear dynamics problems under unilateral elastic constraints. That goal is reached by embedding46

structural one-step integration schemes in an event-driven procedure that relies on a continuous extension47

of the displacement field using cubic Hermite interpolation. In particular, the procedure can also serve48

for the numerical integration of contacting bodies via the penalty method (equivalent to stiff elastic49

unilateral constraint), as long as the underlying problem remains linear and elastic. As is demonstrated50

both analytically and numerically, a salient property of the proposed algorithm is the prevention of51

the typical integration instabilities that arise from the use of the penalty method for the handling of52

contact interactions. Indeed, the coupling of the penalty method with time integration schemes requires53

specific safeguards to prevent the energetic instabilities resulting from the non-vanishing work of the54

contact forces over a contact cycle (closure/opening), see [5, Fig. 6]. Examples of such remedies are55

the energy-preserving and energy-decaying procedures given by Armero and Petőcz [4] and Armero and56

Romero [32], respectively. These precautions are however unnecessary with the solution we propose.57

From the very nature of event-driven integration, the non-vanishing contact work over contact cycles is,58
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indeed, bounded by the accuracy with which root-solving is performed, so that the energy artificially1

introduced in the system can be controlled by a proper choice of the root-solving tolerances.2

The paper is organized as follows. Section 2 introduces the model problem governing linear struc-3

tural dynamics under unilateral elastic constraints. Section 3 elaborates on the concept of event-driven4

integration when coupled to one-step schemes for integrating equations of the model problem type. The5

core strategy for event detection and event localization is presented in detail. Two unconditionally stable6

one-step integration schemes for structural dynamics are briefly reviewed: the second-order generalized-α7

method [30] and the third-/fourth-order 2-level BoTr scheme that can be related to the time discontin-8

uous Galerkin method [33]. Their coupling to the proposed root-solving strategy is studied in Section 49

by application to three examples, two of them having an analytical solution: (i) the elastic bouncing10

bar proposed by Doyen et al. [5], (ii) a simplified representation of Newton’s cradle [34, Chap. 5] on the11

basis of the one-dimensional wave propagation equation and (iii) the pounding of two substructures of12

a building subject to an earthquake. The paper then concludes with a summary of the main results and13

an Appendix section providing details about a MATLAB [35] implementation of the algorithm, available14

online.15

2. Linear structural dynamics and the unilateral elastic contact problem16

The typical problem of (unconstrained) linear structural dynamics is generally described by the17

second-order vector equation of motion18

Mv̇ + Cv + Ku = f , v = u̇, (1)

where M,C,K ∈ Rm×m denote the constant mass, damping and stiffness matrices, u,v ∈ Rm the19

displacement and velocity fields, and f ∈ Rm the vector of external forces. All field variables are function20

of time t ∈ R+, the differentiation with respect to it being denoted by an overhead dot, ẋ := dx/dt.21

Positive integer m := d · ndof represents the number of degrees of freedom of the model ndof times its22

dimensionality d ∈ {1, 2, 3}. Such models can typically be obtained from a spatial semi-discretization of23

solid or structural mechanics problems.24

The model problem addressed in this paper combines equation (1) with unilateral elastic constraints,25

i.e., unilateral springs. These define nodal contact forces that are proportional to the interpenetration26

experienced by two paired contact nodes. For a single contact interface, the magnitude of the contact27

force is given by28

f c := −κ [g]− , (2)

where the Macaulay brackets are defined as [x]− := min ([0 ; x]) and g denotes the gap function. Figure 129

illustrates the definition of the gap function used to measure the interpenetration; it is related to the30

distance between the contact nodes. Starting from an initial configuration defined by position vectors31

~x1, ~x2 that define the initial gap ~g0 := ~x2− ~x1, the system evolves to the deformed configuration charac-32

terized by nodal displacements ~u1, ~u2 under external loading. Restricting our consideration to the linear33

geometrical setting (that is already hidden in the definition of the linear structural dynamics problem),34

the reference configuration is taken to be the initial one. The magnitude of the normal gap is then35

obtained by projection onto the unit vector defining the direction of the initial gap ~e0 := ~g0/ ‖~g0‖36

g := ~e0 · (~g0 + ~u2 − ~u1) . (3)

This approximation, that holds to first order, is illustrated in Figure 1. Expanding the dot product, the37

gap function can be reformulated as an affine transformation of the displacement field, so that, for the38

considered contact interface,39

g = g0 + wTu, (4)

with g0 := ‖~g0‖. The vector w ∈ Rm acts as a signed localization vector of the degrees of freedom active40

at the contact interface, with its entries weighted by the projection of ~e0 into the reference axis system.41

The distribution of the contact force on the nodal variables follows from the definition of the localization42

vector43

f c = −wκ [g]− . (5)

The extension to the case of q unilateral elastic constraints is straightforward by use of vector notation44

g = g0 + WTu, (6)
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Deformed configurationInitial configuration Gap function definition

Figure 1: Definition of the gap function for two paired contact nodes by projection of the current gap on the initial gap
direction ~e0 := ~g0/ ‖~g0‖.

where g,g0 ∈ Rq are the vectors of normal gap functions and initial gaps, and W ∈ Rm×q : Wij = ∂gj/∂ui1

is the signed, weighted, localization matrix for the active contacts. The nodal contact forces then read2

f c = −Wκ [g]− , (7)

with the Macaulay brackets applied componentwise to the entries of the normal gap vector; matrix3

κ ∈ Rq×q is diagonal with entries corresponding to the stiffness of the unilateral elastic constraints. The4

governing equations of the constrained problem thus read5

Mv̇ + Cv + Ku = f −Wκ
[
g0 + WTu

]
− , v = u̇. (8)

Given the elastic nature of the contact constraints, the nonlinearity introduced by the Macaulay brackets6

automatically vanishes by use of an active set strategy. Let C = {1, 2, . . . , q} be the index set of all7

constraints; every entry of C thus identifies a contact interface. As negative gaps correspond to the8

interpenetration of the contacting surfaces, the subset A(t) of active constraints collects the constraint9

IDs corresponding to negative gap functions10

A(t) := {i ∈ C : gi(t) ≤ 0}. (9)

Following the definition of the Macaulay brackets, the contact forces associated with the active constraints11

read12

fA := −
∑
i∈A

κiiWi

(
g0,i + WT

i u
)

; (10)

inactive constraints do not contribute to the contact force, since the contact interface is open. The13

governing equation (8) becomes the combination of equation (9) and14

Mv̇ + Cv + (K + KA) u = f + f0A, u̇ = v, (11)

where15

KA :=
∑
i∈A

κiiWiW
T
i , f0A := −

∑
i∈A

κiiWig0,i. (12)

The integration of the constrained equations of motion (8) is thus equivalent to marching equa-16

tions (11) in time while, at the same time, tracking the evolution of the set of active constraints A(t)17

defined by equation (9).18

3. Event-driven scheme19

The essence of event-driven integration is simple: (i) integrate the current set of governing equations20

from given initial conditions until an event occurs or the final integration time has been reached, (ii) if21

integration stopped due to the reaching of the final simulation time, exit the integration procedure,22

otherwise, update the set of active constraints and post-event state as required, and return to (i).23

Alterations to the set of active constraints at events typically lead to piecewise trajectories. Figure 224

illustrates such a trajectory as it would be computed from an event-driven integration procedure. Every25

transverse crossing of the system trajectory with the hypersurface defining an event gives rise to a state26

transition: the set of active constraints is updated and a new arc of smooth trajectory is initiated.27

Although simple in appearance, the implementation of a robust event-driven integration scheme28

requires overcoming several challenges inherent to floating point arithmetic and the discrete-time rep-29

resentation of a (piecewise) continuous-time problem. For instance, the handling of grazing or that of30
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Figure 2: Piecewise smooth trajectory in state space.

Algorithm 1 timeIntegration

Inputs: initial conditions, model data, integration parameters, root-solving parameters
Outputs: state and constraint time histories

1 Initialize procedure (storage, active constraints at initial time, etc.)
2 Loop over time increments until final simulation time is reached
3 Compute provisional state xn+1 from xn using An
4 Detect event(s) that possibly occurred over [tn, tn+1]
5 if events have been detected
6 Localize earliest occurrence of event(s) from the right and

its(their) ID by timestep reduction
7 Update constraint statuses
8 end if
9 Increment counter n← n+ 1
10 end Loop
11 return

simultaneous events in finite precision are non trivial tasks. A proper treatment of these issues and the1

likes requires the ad hoc combination of an integration procedure, a root-solving strategy and a decision2

module for the update of active constraints.3

Algorithm 1 presents the main steps of the procedure we advocate. After the initialization of the4

required variables, the procedure enters the event-driven integration loop that is conducted until the5

final simulation time is reached. The computation of each time increment is the result of several key6

intermediate steps that are specifically addressed and detailed in the sequel of the paper, for the specifics7

of the model problem introduced in Section 2. First, the provisional state xn+1 := x(tn+1) at tn+1 is8

computed by use of a one-step integration scheme, assuming that contact constraint statuses remain9

the same over the timestep, i.e., A(t) = An, t ∈ [tn, tn+1], with An := A(tn). Second, event detection10

is conducted to verify that no constraint status changes over the timestep. If any do(es), the event11

localization module is called, else it is bypassed. This module computes the system state at intermediate12

times tk ∈ [tn, tn+1] approximating the earliest occurrence of an event over the timestep. It returns a13

time tk and a corresponding state xk := x(tk) at which events may or may not take place. The effective14

timestep thus covers time interval [tn, tk]. If an event has occurred, by design of the procedure, it has15

in the nearby prior vicinity of tk (implicit verification of the transversality condition); the update of16

constraint statuses is then performed, merely following from the event occurrence. The next increment17

is taken from tk or tn+1 following the detection or not of an event.18

A MATLAB implementation of the procedures presented in the paper is available online. See the19

Appendix for access details and file descriptions.20

3.1. One-step time integration schemes21

Any increment of the integration procedure starts with the computation of the provisional state22

xn+1 (Algorithm 1, line 3). Multistep schemes require several past data points to march the governing23

equations by one step in time. Were chattering to occur, this could prove cumbersome with successively24

computed data points possibly corresponding to different dynamics (constraint statuses). We therefore25

restrict our discussion to one-step schemes that only require data from a single previous time instant to26

step the solution in time.27
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When applied to a system of linear ODEs, these schemes give rise to the following update equation1

for the unknown state vector xn+12

H0xn+1 = H1xn + `n+1
n . (13)

The iteration matrices and the load vector are denoted by H0,H1 and `n+1
n respectively; they depend3

on the model governing matrices M,C,K, the external load vector f , the integration timestep h and,4

possibly, algorithmic parameters related to the integration scheme. The state vector x contains the5

displacement and velocity variables plus any additional variables required by the scheme definition, e.g.,6

the acceleration for α-like schemes [29, 31].7

As examples, we specialize equation (13) to the generalized-α [30] and the 2-level BoTr [33] schemes.8

The following update equations are respectively obtained where, besides the time indexation subscript n,9

all other indices pertain to the definition of the variable names10  (1− αf )K (1− αf )C (1− αm)M
I 0 −βh2I
0 I −γhI

 un+1

vn+1

v̇n+1


=

 −αfK −αfC −αmM
I hI h2(1/2− β)I
0 I h(1− γ)I

 un
vn
v̇n

+

 f(tn+1−αf
)

0
0

 ,

(14)11 (
C + η+3

6 hK M− 1+η
12 h

2K

M− 1+η
12 h

2K −η+3
6 hM− 1+η

12 h
2C

)(
un+1

vn+1

)
=

(
C + η−3

6 hK M− 1−η
12 h

2K

M− 1−η
12 h

2K −η−36 hM− 1−η
12 h

2C

)(
un
vn

)
+

(
F1(

tn+1/2 − η
6h
)
F1 − F2

)
.

(15)

For both schemes, the algorithmic parameters can be related to the spectral radius of the amplification12

matrix at infinite frequency ρ∞. We respectively have13

αm :=
2ρ∞ − 1

ρ∞ + 1
, αf :=

ρ∞
ρ∞ + 1

, β :=
1

4
(1− αm + αf )

2
, γ :=

1

2
− αm + αf , (16)

and14

η :=
1− ρ∞
1 + ρ∞

. (17)

They are unconditionally stable, i.e., the amplification matrix has spectral radius below one ρ ≤ 1,15

conservative for ρ∞ = 1 and dissipative when ρ∞ = [0, 1). Scheme (14) is second-order accurate for16

all algorithmic configurations whereas scheme (15) is third-order accurate in the dissipative setting and17

fourth order in the numerically conservative case. For completeness, additional definitions read18

tn+1−αf
:= (1− αf )tn+1 + αf tn, tn+1/2 :=

1

2
(tn + tn+1) , (18)

I ∈ Rm×m and 0 ∈ Rm,Rm×m refer to the identity matrix and the zero vector or matrix depending on19

the context. Integral actions F1,F2 ∈ Rm are fourth-order accurate approximations of the external force20

mean and first time-moment values by the Simpson-Cavalieri quadrature formula21

F1 :=
h

6

(
f(tn) + 4f(tn+1/2) + f(tn+1)

)
, F2 :=

h

6

(
tnf(tn) + 4tn+1/2f(tn+1/2) + tn+1f(tn+1)

)
. (19)

Figure 3 reproduces the spectral radius of the amplification matrix (left plot) and the relative period22

error (right plot) for both schemes as the reduced frequency Ω := ωh is varied. The relative period error23

is fourth order and second order for the 2-level BoTr and generalized-α schemes, respectively.24

Although the two presented examples are implicit integration schemes, nothing prevents the procedure25

to be coupled to explicit one-step schemes. Explicit schemes of the Runge-Kutta family fit into the format26

of equation (13) with H0 equal to the identify matrix [36]. These are, however, usually expensive to27

use with equations of motion, and schemes dedicated to structural dynamics will typically be preferred,28

in a multi-stage implementation exploiting a diagonal mass (lumped) matrix rather than the format of29

equation (13). An implementation of the Noh-Bathe procedure [37] is provided online, for the reader to30

explore the application examples; see details in the Appendix. Attention to the selection of the timestep31

must, nonetheless, be paid, as explicit schemes are typically only conditionally stable (whereas common32

implicit schemes are unconditionally stable). In particular, closed contact configurations associated33

with a high contact stiffness are likely to drive the critical timestep of the integration scheme. Further34

comparison of explicit schemes, as applied to impact dynamics, is given by Nsiampa et al. [38].35
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Figure 3: Spectral radius of the amplification matrix (left) and relative period error (right) for the generalized-α and 2-level
BoTr integration schemes.

3.2. Root-solving procedure1

Restricting our consideration to linear structural dynamics under unilateral elastic constraints, event2

detection and localization is equivalent to the detection and identification (Algorithm 1, lines 4 and 6)3

by the root-solving procedure of the zeros of the normal gap functions g(u(t)) ∈ Rq occurring over the4

current timestep, i.e., t ∈ [tn, tn+1]. Further assuming that the only information available are the state5

vectors at the beginning and at the end of the timestep xn,xn+1, we resort to cubic Hermite interpolation6

to provide a continuous representation of the normal gap functions on the basis of their values and that of7

their derivatives at time instants tn, tn+1, gn := g(tn),gn+1 := g(tn+1) and ġn := ġ(tn), ġn+1 := ġ(tn+1).8

As normal gap functions depend on the displacement field only, their time derivative are functions of the9

velocity field and can be computed from the state vector provided by the integration procedure, without10

additional computations.11

Introducing the dimensionless time τ(t) = (t− tn)/h that has unit parent domain over the timestep,12

τ(t) : [tn, tn+1]→ [0, 1], the interpolated normal gap functions read13

g̃(τ) := gn + τhġn + τ2 (−3gn − 2hġn + 3gn+1 − hġn+1) + τ3 (2gn + hġn − 2gn+1 + hġn+1) . (20)

This continuous extension of the normal gap functions is the backbone of the event detection and event14

localization as both procedures are based on the computation of its zeros. It is also the source of possible15

numerical complications such as numerical grazing. The tilde notation has been introduced to underscore16

the fact that g̃(τ) is an approximation to the time-continuous normal gap functions g(τ).17

Sturm sequences [39] and the likes based on Vincent’s theorem [40], which associate the presence of18

polynomial roots in arbitrary intervals to sign changes in specific sequences, are well known means for19

the detection of roots of univariate polynomials in selected intervals. They are commonly implemented20

in Computer Algebra Systems (CAS) in combination with exact arithmetic. However, when combined21

to floating-point arithmetic, these become more difficult to use not to say unreliable when badly scaled22

polynomials are to be assessed; see for instance the specific iterative treatment proposed by Suzuki and23

Sasaki [41] to regularize Sturm sequences in such cases. By design of the proposed root-solving algorithm,24

there will be numerous situations where badly scaled and degree degenerate polynomials will be expected.25

A simple example is when the timestep h becomes very small as compared to the characteristic timescale26

of the oscillations (dictated by the external loading and the system maximum eigenfrequency), for the27

system trajectory is almost linear in that setting. Alternative techniques must thus be exploited.28

To avoid any robustness issue, we opt for the computation of the roots of each normal gap function29

Hermite interpolant, although it has a significant cost. We base our approach on two eigenvalue compan-30

ion problems: one that requires the scaling of the polynomial by the leading-order coefficient and that is31

thus sensitive to degree degeneracy, and one that is based on the barycentric representation proposed by32

Corless et al. [42], less sensitive to degree degeneracy but more expensive. Cardano’s analytical formu-33

las are avoided due to their sensitivity to degree degeneracy and, in floating-point arithmetic, to error34

propagation in the computation of the intermediate coefficients defining the polynomial roots [43].35

Considering a sequential approach for the handling of events (loop over all event functions, ∀i ∈ C),36

the coefficients of the polynomial interpolant approximating the ith gap function are easily obtained from37

equation (20) by the replacement g← gi. The cubic approximant P (τ) and its normalized version P0(τ)38

read39

P (τ) := g̃i(τ) = a3τ
3 + a2τ

2 + a1τ + a0, P0(τ) :=
1

a3
P (τ) = τ3 + c2τ

2 + c1τ + c0. (21)

7



Algorithm 2 eventDetection - Exploded view of Algorithm 1, line 4.

Inputs: h,gn, ġn,gn+1, ġn+1, degTol
Outputs: Ievt,hevt,dg̃Ievt/dt

Ievt = [ ]
hevt = [ ]
for i ∈ C

Form polynomial coefficients aj , j = 0, 1, 2, 3 by setting g← gi in Eq. (20)
if a3 ≥ degTol % No degree degeneracy

Normalize polynomial coefficients by a3
s = λ(Υ) % See Eq. (22)

else % Assume degree degeneracy
s = λ(Υ0,Υ1) % See Eq. (23)

end if
if ∃j : sj ∈ [0, 1] % Store roots that are within [0,1]
Ievt ← [Ievt ; j], hevt ← [hevt ; hsj ]

end if
end for
Sort output according to occurrence time of event(s)
Compute time derivative of g̃Ievt at crossing points
return

On the one hand, if we define the companion matrix1

Υ :=

 −c2 −c1 −c0
1 0 0
0 1 0

 , (22)

it readily appears that the characteristic polynomial of Υ is equal to the normalized approximant P0(τ),2

i.e., P0(τ) ≡ |τI−Υ|. Thus, event times are approximated by the eigenvalues of the companion matrix3

s = λ(Υ), which can be numerically computed using any appropriate library. On the other hand, it can4

be shown [42] that, upon definition of matrices5

Υ0 :=


0 P (0)

1 0 Ṗ (0)
1 P (1)

1 1 Ṗ (1)
−2 −1 2 −1 0

 , Υ1 :=


1

1
1

1
0

 , Ṗ (τ) =
dP

dτ
, (23)

the roots of the cubic approximant are given by the generalized eigenvalues s = λ(Υ0,Υ1) = {τ ∈ C :6

|τΥ1 −Υ0| = 0}; less the two spurious eigenvalues at infinity that result from the companion problem7

formulation that are to be discarded. This alternative formulation enables the handling of degenerate8

polynomials, for which a3 � 1. Similarly, these eigenvalues can be obtained using any appropriate9

library.10

Algorithm 2 summarizes the event-detection procedure; it is written in pseudo-code inspired from11

the MATLAB syntax [35]. For each gap function (∀i ∈ C), the coefficients of the cubic approximant12

are formed and its roots are computed using the former companion problem if degree degeneracy is not13

expected (degTol is an input parameter used to assess degree degeneracy) and the latter one in the14

opposite situation. Should any root be located in the parent domain, the event indices as well as the15

root magnitudes (provisional event times) are stored concurrently to the already computed results. As16

a last step, the outputs are sorted according to the forecast event times and the time derivatives of the17

event functions are computed at the crossing points, for use in the event localization procedure. In case18

no event is detected, the output variables return empty arrays, as denoted by [ ].19

As g̃ is an approximation to g, their zeros do not necessarily coincide. In case an event is detected,20

it must be accurately localized, in accordance with the problem original dynamics, through an iterative21

procedure that must prove robust to numerical accumulation and numerical grazing; these are two22

artifacts that result from event localization up to a given tolerance instead of an exact localization and23

from the use of an approximate representation of the normal gap function. They can, nevertheless,24

be prevented by two algorithmic ingredients: (i) the driving of the iterative process beyond the event25

8



Active
constraint

Inactive
constraint

Inactive
constraint

Ghost events

Regular time nodes

Event-localized nodes

Provisional trajectory

Accepted trajectory

Figure 4: Illustration of numerical accumulation.

Active
constraint

Violated
constraint

Inactive
constraint

Constraint violation

Regular time nodes

Event-localized nodes

Provisional trajectory

Accepted trajectory

Figure 5: Illustration of numerical grazing and constraint violation.

occurrence, as suggested by Birta et al. [44], and (ii) the acceptance of all computed points prior to the1

event occurrence. We illustrate the two situations, then propose a strategy that avoids them.2

Let us first illustrate the issue of numerical accumulation, also known as discontinuity sticking in3

the literature [26, 45]. For this, we consider the single gap function and the associated constraint status4

evolution displayed in Figure 4. A first zero takes place at time t∗1 where the provisional trajectory crosses5

the g = 0 boundary/axis. Assuming that iterative localization is performed until convergence, deemed6

by criterion |g(t)| < gTol, it may well be that the root verifies t1 < t∗1, i.e., event occurrence is localized7

before the actual zero of the normal gap function. Given the negative gap velocity (ġ(t1) < 0) and the8

positive residual after convergence (0 < g(t1) < gTol), the trajectory is expected to effectively cross9

the boundary g = 0 shortly after t1. A similar setting is observed at t2 6= t∗2, for which the converged10

configuration is ġ(t2) > 0,−gTol < g(t2) < 0, yielding a possible crossing shortly after t2. These events11

(depicted by crosses in Figure 4) are, however, to be discarded for they are ghost representations of the12

events localized at t1 and t2. Not rejecting them could well lead to a failure of the integration procedure13

due to an infinite (numerical) accumulation of events should the event-localization procedure always14

converge to gap residuals of the same sign (positive at t1, negative at t2).15

The situation of numerical grazing is illustrated in Figure 5. At time t1, an event is localized with pos-16

itive gap residual. The negative crossing velocity suggests that the constraint status should be switched17

from inactive (open contact) to active (closed contact). However, due to the loading circumstances and18

the problem dynamics, the trajectory actually never crosses the constraint hyperplane g = 0, which19

results in the constraint violation at time t2 and erroneous computations.20

To circumvent the issues of numerical accumulation and grazing, the event localization procedure21

detailed in Algorithm 3 is proposed. It is based on the prediction of the earliest occurrence of an event22

returned by the cubic approximant tn+hIevt1 , shifted by a function of a relaxation parameter ηk ∈ (0, 1]23

that monotonically decreases from 1 to 0 as the number of iterations tends to maxIter (the maximum24

number of allowed iterations), gap velocity at the detected event dg̃Ievt1/dt25

tk = tn + hIevt1 (1 + σk), (24)

that serves to compute the state and the normal gap functions from data at tn. The purpose of the shift26

function is to ensure the crossing of the constraint hyperplane (g = 0). From the definition of iterative27

time tk, the timestep interval is then divided in three non-overlapping subintervals,28

[tn, tn+1] = I1 ∪ I2 ∪ I3 := [tn, tk − aTol) ∪ [tk − aTol, tk) ∪ [tk, tn+1], (25)

where parameter aTol := min([tTol ; gTol/max(|ġIevt |)]) is a tolerance introduced to increase the ac-29

curacy of event localization in near-grazing situations; gTol, tTol are parameters of the root-solving30

procedure. Computation of the earliest event occurrence is then performed by use of Algorithm 2. If31

it is located in I1, an additional iteration is requested. If it belongs to I2 and all events have a gap32

9



Algorithm 3 eventLocalization - Exploded view of Algorithm 1, line 6.

Inputs: Ievt,hevt, Ioldevt , gTol, tTol all data required to form iteration matrices
Outputs: Ievt, tk,xk, hnext

k = 1
tk = tn + hIevt1 (1 + σk)
while true

Compute state at tk
Compute gap functions at tk
Check occurrence of events on time interval [tn, tk) = I1 ∪ I2 using eventDetection
if no event occurs in [tn, tk)

Check if any gap function is equal to 0
if there is none

return Ievt = [ ], hnext based on occurrence on I3, using eventDetection,
or the regular timestep if no event (numerical accumulation)

else
return Ievt corresponding to 0 normal gap functions

end if
else % At least one event takes place in [tn, tk)

if all events are in I2 and verify |gk + gTol · sign(gn)| < gTol

return time and state at tk, and their indices
else % Proceed with an additional iteration

k = k + 1
tk = tn + hIevt1 (1 + σk)

end if
end if
Increment iteration counter
if k > kMax % Maximum number of iterations reached

return error

end if
end while

function with magnitude verifying |gk + gTol · sign(gn)| < gTol, their IDs are stored in integer subset1

Ievt; multiple events are then automatically handled. The procedure exits the iterative loop and returns2

tk,xk and Ievt. Otherwise, an additional iteration is requested. If the earliest event is located in I3, the3

current state at tk is accepted as is, even though no events have been localized. The procedure exits the4

iterative loop and returns tk,xk and Ievt = [ ]. In that case, the next timestep is taken with h = 2hIevt15

to ensure that the next increment slightly overpasses the supposed instant of event occurrence if an event6

is detected in I3; otherwise, the regular timestep is used (this corresponds to near-grazing). The robust7

handling of numerical grazing is thus automatically achieved; that is, when the cubic approximant of8

the gap function predicts the existence of an event when, actually, the state trajectory never crosses nor9

touches the event hyperplane, i.e., ∃i ∈ C, τ∗ ∈ [0, 1] : g̃i(τ∗) = 0 but ∀i ∈ C, τ∗ ∈ [0, 1] : gi(τ∗) 6= 0; see10

Figure 5.11

3.3. Decision module for constraint (de)activation12

Conceptually, the change of constraint status is simple (Algorithm 1, line 8); it is driven by the13

transverse nature of the trajectory and constraint hyperplane intersection. A negative normal gap velocity14

corresponds to the closure of the contact interface and a positive to its opening. These drivers to15

constraint switches are, however, implicitly buried in the the event-localization module. Indeed, as16

localized events necessarily verify the transversality condition, constraint switches merely follow from17

the occurrence of an event and the dichotomous nature of the contact status. A contact interface closed18

prior to event occurrence will be thus be opened and vice versa.19

In addition to the update of constraint statuses, this module can also handle the choice of the timestep20

size h. Faithful to the practice of structural dynamics simulation, we opt for two values for the timestep, a21

larger one to be used whenever all contact interfaces are open, and a smaller one to be used when at least22

one interface is closed. These can, for instance, be computed on the basis of the highest eigenfrequency23

of the structural dynamics model, so as to avoid aliasing.24
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3.4. Scheme stability from an energetic perspective1

A common issue arising from the use of the penalty method in the definition of the contact forces is the2

introduction of spurious energy in the system through the non-vanishing work of the contact forces over3

contact closure/opening cycles. This energy can lead to the instability of the time integration procedure4

and the blow up of the solution [5].5

Remedies have been provided, notably under the form of the energy-momentum conserving algorithm6

(EMCA) [4] and the energy-dissipative momentum conserving (EDMC) procedure [32]. These second-7

order accurate procedures, based on the midpoint integration scheme, enforce an algorithmic definition8

of the contact force so as to ensure a zero net work of the contact force over a closure/opening cycle. This9

definition guarantees energetic stability but does require solving a nonlinear problem at each increment,10

contrary to the linear solver required for the proposed event-driven procedure. This apparent drawback11

is nonetheless counterbalanced by the fact that a constant timestep can be used, a positive point in12

settings where constraint chatter occurs, or in the presence of numerous contact interfaces. However,13

they are limited to the handling of unilateral elastic constraints governed by normal gap functions and14

are not suitable for the end application of percussive drilling that we have in mind.15

To evaluate the amount of spurious energy introduced in the system by the contact forces during the16

event-driven integration, let us consider a single interface and a persistent contact sequence of k steps,17

as depicted in Figure 6. The work increment realized by the contact force f c over a timestep is given by18

∆W c
n→n+1 :=

f cn + f cn+1

2
(gn+1 − gn) = −κ

2

(
[gn+1]− + [gn]−

) (
gn+1 − gn

)
. (26)

Accordingly, the work variation over the k-step sequence is given by19

∆W c
n→n+k = −κ

2

k−1∑
j=0

(
[gn+j+1]− + [gn+j ]−

)(
gn+j+1 − gn+j

)
= −κ

2
(gn+kgn+k−1 − gn+1gn) . (27)

It only vanishes under the condition that the gap function verifies (gn+kgn+k−1 − gn+1gn) = 0, a condition20

that is, in practice, never achieved. Positive or negative variations of the system mechanical energy are21

thus expected for each closure/opening cycle of a contact interface. They are the reason for a possible22

blow up of the solution.23

However, in the frame of the event-driven scheme proposed in this paper, the magnitude of the gap24

function at the closure and opening of the contact interface is upper bounded by the tolerance of the25

event-localization procedure gTol. The variation of the contact force work is thus bounded as follows26 ∣∣∆W c
n→n+k

∣∣ ≤ κ

2
(|gn+kgn+k−1|+ |gn+1gn|) ,

≤ gTolκ (gn+k + gn) .
(28)

Usage of a sufficiently strict tolerance gTol for the event-localization procedure therefore guarantees27

the stability of the scheme with respect to the contact definition, provided the number of contact clo-28

sure/opening cycles remains finite and conditions for the stability of the integration scheme between29

events are met. Further, this bound can be exploited to provide an order of magnitude for gTol. Given30

orders of magnitude for the tolerated contact work over a contact cycle (it is a measure of the tolerated31

11



energy drift over a contact cycle and must be chosen in balance with the level of mechanical energy in1

the system), for the gap function around contact status change O(g) and the contact stiffness, we have2

O(gTol) =
1

κ

O(∆W c
n→n+k)

O(g)
. (29)

Stringent tolerances will therefore be required whenever contacts are stiff and energy drift is to be tightly3

controlled, though the estimate is very conservative, as is demonstrated next.4

4. Application examples5

This section proposes three application examples that illustrate the accuracy, stability and robustness6

of the proposed integration procedure. Problem complexity is gradually increased. The first example7

is that of an elastic bouncing bar in an acceleration field. This 1-dimensional problem features a single8

unilateral elastic constraint. The second example is a variation on the problem of impacts in Newton’s9

cradle. Though it features several constraints, the system is not expected to experience the simultaneous10

occurrence of events at distinct contact interfaces, through the choice of specific initial conditions and11

gaps. The third and last example is that of the pounding between two substructures of a building when12

subjected to a horizontal ground acceleration mimicking an earthquake. Several contact interfaces are13

defined and simultaneous contact events occur.14

The presented results have been obtained with the MATLAB software [35]. Although it does not15

offer the performance levels of equivalent codes in compiled languages, e.g., C/C++ or FORTRAN, the16

versatility of the environment makes it ideal to test concepts and validate algorithms. MATLAB scripts17

to reproduce the simulations proposed next are available on the bibliographic repository of the Université18

de Liège (orbi.ulg.ac.be). See details in the Appendix.19

4.1. Bouncing bar20

As a first application of the proposed algorithm, we consider the bouncing bar benchmark proposed21

by Doyen et al. [5]. It consists of an elastic bar of constant properties and section, subject to a constant22

acceleration along its axis and whose motion is constrained by a rigid wall at one of its ends. Upon23

proper adjustment of the problem parameters, the bar motion follows a periodic sequence of persistent24

contact and free flight phases. The problem definition as well as the periodic response are shown in25

Figure 7. The reader is referred to their paper for more details on the problem definition and solution.26
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Figure 7: Analytical solution to the bouncing bar benchmark – The periodic motion comprises four phases: (i) non-
oscillatory free flight phases represented by parabolas (t/τW ∈ [0, 3] ∪ [13, 19] ∪ [29, 32]), (ii) compressive contact phases
(t/τW ∈ [3, 5] ∪ [19, 21]), (iii) oscillatory free flight phases (t/τW ∈ [5, 11] ∪ [21, 27]), and (iv) expansive contact phases
(t/τW ∈ [11, 13] ∪ [27, 29]). Parameters: (h0, L, c0, ϑ) = (5, 10, 30, 10).
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The governing equations for this example are given by1

Mv̇ + Ku + κw
[
wTu

]
− = −M1ϑ, v = u̇, (30)

with initial conditions u0 = h0,v0 = 0. Column vector 1 ∈ Rm consists of unit entries only. The global2

mass and stiffness matrices are obtained by assemblage of the elementary matrices relative to linear rod3

elements4

Me =
Le
12

(
5 1
1 5

)
, Ke =

c20
Le

(
1 −1
−1 1

)
, (31)

with element length Le. The average of the lumped and consistent mass matrices is used, as it is known5

to reduce the error associated with the spatial discretization [29, p. 446]. This example problem having6

a single contact interface (n = 1), the vector of event functions degenerates into a scalar normal gap7

function8

g = wTu, (32)

with w = [1 ; 0 ; · · · ; 0 ; 0], following the numbering convention that bottom and top nodes have number9

1 and m respectively.10

Numerical integration of the governing equations using the proposed algorithm and the 2-level BoTr11

scheme with ρ∞ = {1.0, 0.5, 0.0} yields the results displayed in Figure 8. Two integration timesteps are12

used, one for free flight phases and one for persistent contact ones. They are computed so that there are13

at least 2.5 computed points per lowest eigenperiod of the system. Other simulation parameters are given14

in the figure caption. The analytical solution is represented as well, for comparison. Plot (a) displays15

the time evolution of the displacement field at the bar extremities and at its center of gravity. After two16

periods of motion, the effects of numerical dispersion become important, with significant alterations to17

the free flight phase (t/τW ∈ [29, 32]). This limited fidelity translates the difficulties of the continuous18

Galerkin method (without resorting to more advanced formulations or adaptive meshing) to accurately19

capture the response of non-smooth problems with strong strain or velocity discontinuities, as is the case20

in the present example (discontinuity of the velocity and stress fields at the wave front). Plot (b) shows21

the evolution of the computed contact force at the bar/wall interface. The system experiences important22

chattering when conservative simulation is used, leading to an inaccurate representation of the contact23

force as it is computed at the end of the timestep when the gap magnitude is close to 0+. Dissipative24

configurations do perform better. The initial peak force at contact closure is rapidly damped; the force25

then converges toward the analytical solution. Plots (c)-(d) pertain to system energy quantities. Plot (c)26

represents the normalized balance of the system total energy (kinetic+strain+gravity), constant for the27

continuous problem. Plot (d) shows the error on the system mechanical energy (kinetic+strain) with28

respect to that of the continuous problem. The energetic stability of the event-driven integration scheme29

is confirmed. In particular, for the conservative setting of time integration (ρ∞ = 1.0), the total energy30

remains constant up to a negligible drift related to gTol, see Section 3.4. The dissipative character of31

the integration procedure for ρ∞ ∈ {0.5, 0.0} also clearly appears once the bar starts to vibrate. Even32

though initial levels of mechanical energy error are higher for dissipative configurations than for the33

conservative one, all configurations tend to significant peak error levels after two periods. The influence34

of numerical dispersion (that varies with ρ∞) is visible in the error drops related to the periodic nature35

of motion, as they take place at distinct instants for the three simulations. Plots (e)-(f) illustrate the36

evolution of the bar total linear momentum pn := 1TMvn and that of its error. Trends similar to these37

observed with respect to the system energy are observed. When ρ∞ = 1.0, chattering is responsible for38

the increased error levels during persistent contact. Nevertheless, during free flight phases, lower error39

levels are achieved than with dissipative configurations of the integration scheme. Thus, even though40

chattering prevents an accurate representation of the contact force, it does not significantly degrade the41

solution quality in regards to the accuracy of the displacement and velocity fields. Table 1 reports the42

simulation performances for the three numerical settings of Figure 8. It is seen that the conservative43

simulation requires much more computational effort than the dissipative ones. This is mainly caused by44

the larger number of increments engendered by the constraint chatter. Both performance and accuracy45

require the introduction of some numerical damping.46

In order to assess the influence of the tolerances of the event-localization procedure on the stability47

of the integration procedure and the accuracy of the solution, we have computed the relative energy drift48

of the system for several values of (gTol, tTol). Obviously, conservative integration was used, so that49

the drift can be assessed from the variation of the system total energy between times 0 and 2T = 32τW .50

The results are depicted in Figure 9, both in terms of magnitude and sign of the drift. Simulation51

parameters of Figure 8 have been used. As expected, the overall drift can be positive or negative as the52
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Figure 8: Numerical response of the elastic bouncing bar. Simulation parameters: 2-level BoTr scheme, m = 101
(100 elements), timestep h is computed so that there are 2.5 points per lowest eigenperiod of the model (h, hred) =
(3.42 · 10−3, 3.77 · 10−4), root-solving parameters (gTol, tTol) = (10−8, 10−8), contact stiffness κ = 100 ·max(K). Plots:
(a) numerical dispersion of the traveling waves starts to significantly alter the computed displacement after two periods;
(b) the higher the numerical dissipation, the faster chattering at the contact interface is damped and the numerical contact
force converges toward the exact value, the contact force is improperly represented in the undamped case due to chattering;
(c) the stability of the event-driven integration procedure is well confirmed by the boundedness of the system total energy,
when conservative time integration is used, the drift is barely observable; (d) conservative integration performs better than
dissipative integration with respect to the error on the system mechanical energy over the first period of motion, then error
levels tend to become equivalent due notably to dispersion; (e) the bar total momentum is not significantly affected by
the incorrect representation of the contact force in the numerically conservative setting; and (f) conservative integration
performs slightly better than dissipative integration in the long term. The line colors refer to the amount of numerical
dissipation generated by the integration scheme, as mentioned in the legend.

ρ∞ 1.0 0.5 0.0

# increments 11397 3633 3372
CPU time (normalized) 6.76 1.17 1.00

Table 1: Influence of the integration scheme numerical damping on the procedure performance.
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Figure 9: Tolerance influence on the relative energy drift of the system after two periods.

gTol = tTol 10−8 10−6 10−4 10−2

Relative energy drift ∆E/E0 1.51 · 10−11 3.50 · 10−7 −4.80 · 10−5 3.70
Number of contact cycles 975 921 889 656
O(∆W c) = κ · gTol · O(g) 1.8 · 10−5 1.8 · 10−3 1.8 · 10−1 1.8 · 101

Worst case drift 1.75 · 10−2 1.66 · 100 1.60 · 102 1.18 · 104

Table 2: Influence of the integration scheme numerical damping on the procedure performance.

net work of the contact forces over a contact cycle is not necessarily positive. For this specific problem,1

we observe that gTol is the single control parameter of the energy drift at low values, for the drift is2

virtually independent of tTol. For larger values of gTol, however, the role of tTol is more significant;3

the instability of the procedure also appears, with drifts up to several times the initial energy level for4

gTol = tTol = 10−2; see the last column of Table 2.5

Further investigation reveals that the gTol estimate provided by equation (29) is very conservative.6

Table 2 provides details about the overall relative energy drift and the number of contact cycles for7

a number of values of the tolerances gTol, tTol. A posteriori, having identified O(g) = 10−3 from8

the simulation results, we have calculated the order of magnitude of the energy drift per contact cycle9

O(∆W c) and the worst case drift that could be expected by multiplying it by the number of contact10

cycles. The magnitudes of the worst case drift are several orders higher than those of the observed drift.11

The estimate (29) can thus be safely used to choose an order of magnitude for the event-localization12

tolerance gTol, once O(g) has been identified. Also, given the limited role of tTol at low gTol, both13

tolerances can be set equal in a first simulation run, for the sake of simplicity.14

4.2. Newton’s cradle15

The next application example is inspired from the so-called Newton’s cradle, a device that consists16

of collinear identical cable-suspended steel balls that, after initiation of a first impact, collide in a the-17

oretically infinite manner through conservation of both momentum and energy. Far from the original18

model that comes with its lot of complexities due to the possibility of multiple impacts occurring simul-19

taneously, see for instance [34], the one we consider is an academic simplification. Rather than working20

with spherical impactors, we consider B identical slender elastic bars with constant properties along21

their main axis. Figure 10 illustrates this conservative system for B = 5. Given the slenderness and the22

elasticity of the bars, we assume that their motion is ruled by the 1-dimensional wave equation. The23

problem is thus characterized by parameters (c0, L, g0, G0, v0), the wave propagation speed in the bars,24

the bar lengths, the initial gap between the bars, the initial gap between extreme bars and the rigid side25

walls, and the initial velocity of bar 1 (all other bars being initially at rest), respectively. The specific26

choice g0, G0 > Lv0/c0 ensures the sequential nature of persistent contact phases.27

Denoting by x ∈ [0, L] the abscissa along a bar and by t ∈ R+ the time variable, the motion of the28

bth bar is ruled by29

∂bv

∂t
(x, t) = c20

∂2bu

∂x2
(x, t), bv(x, t) =

∂bu

∂t
(x, t), b ∈ {1, · · · , B}. (33)
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Figure 10: Simplified model of Newton’s cradle with B = 5 identical bars of length L. Gaps between all bars (g0) are taken
identical and so is it for the gaps with the rigid side walls (G0). They also verify the condition g0, G0 > Lv0/c0. Bar 1 has
initial velocity v0 while all other ones are at rest.

Figure 11: Velocity distribution during a phase of bar/bar contact. At t = tc, the left bar impacts with uniform velocity vc
the right one that is at rest. The persistent contact phase lasts 2tW = 2L/c0, that is the time taken for the wave front
to travel forth and back the bars. After completion of the contact phase, both bars are free of vibrations and behave like
rigid bodies; the impacted one has uniform velocity vc and the impacting one is at rest.

The initial conditions read bu(x, 0) = 0, b ∈ {1, . . . , B}, 1v(x, 0) = v0, bv(x, 0) = 0, b ∈ {2, . . . , B}. The1

boundary conditions depend on the bar contact configurations which evolve in time. Three configurations2

are to be considered: free flight, bar/bar contact, bar/wall contact.3

During free flight, the bar is unconstrained and free to move axially. In the absence of external forces,4

the bar is thus at rest, in stationary motion or freely vibrating. Given the problem characteristics, the5

latter possibility can be discarded; see below.6

During bar/bar contact, the conjugated ends of the contacting bars are constrained by force equilib-7

rium and equality of the displacements (and velocities, obviously) at the contacting surfaces (condition8

of non-interpenetration), and unconstrained at their free ends. Given the identical nature of the bars9

and the specifics of the initial conditions, we can restrict our consideration to the case of the longitudinal10

impact of one bar a having uniform velocity vc on an other one b that is at rest. This impact configuration11

is treated in details by Graff [46, Sec. 2.4] by use of d’Alembert’s solution to the wave equation. Upon12

closure of the contact interface, a wave front propagates from the contact surface towards the free ends13

of the contacting bars. It propagates information as to the bar velocity which is discontinuous across it;14

see Figure 11. This propagation lasts for 2tW = 2L/c0; that is, the time necessary for a round trip of15

the wave front inside the bars. During the contact phase, the velocity in each bar is given by16

av(x, t) = vc

{
1 c0(t− tc) < L− x
1
2 c0(t− tc) ≥ L− x

, bv(x, t) = vc

{
1
2 c0(t− tc) > x

0 c0(t− tc) ≤ x
, t ∈ [tc, tc + tW ] ,

av(x, t) = vc

{
0 c0(t− tc) > L+ x
1
2 c0(t− tc) ≤ L+ x

, bv(x, t) = vc

{
1
2 c0(t− tc) < 2L− x
1 c0(t− tc) ≥ 2L− x

, t ∈ [tc + tW , tc + 2tW ] .

(34)
After completion of the contact phase, the impacting bar is thus at rest and the impacted one has uniform17

velocity vc, as a result of perfect momentum transfer. Both are free of vibrations and deformations. Also,18

each bar has achieved a displacement of v0tW over the duration of the contact phase.19

During bar/wall contact, the situation is similar to that during bar/bar contact except that the20

impacting bar experiences a velocity reversal. The four phases of the contact sequence are depicted in21

Figure 12. At time t = tc + tW , the bar is in uniform compression state with strain ∂bu/∂x = −vctW /L.22

The contact phase completes after 2tW . Over the duration of persistent contact, the velocity field is23

defined by24

bv(x, t) = vc

{
1 c0(t− tc) < L− x
0 c0(t− tc) ≥ L− x

, t ∈ [tc, tc + tW ] ,

bv(x, t) = −vc

{
0 c0(t− tc) > L+ x

1 c0(t− tc) ≤ L+ x
, t ∈ [tc + tW , tc + 2tW ] .

(35)

16



Figure 12: Velocity distribution during a phase of bar/wall contact. At t = tc, the bar impacts a rigid wall with uniform
velocity vc. The persistent contact phase lasts 2tW = 2L/c0; that is, the time taken for the wave front to travel forth
and back the impacting bar. After completion of the contact phase, the impacting bar rebounds off the wall with uniform
opposite velocity −vc.

Given the chain nature of the system, the specificity of the initial conditions and the system behavior1

during interaction phases, the system global response corresponds to a sequence of free flight, bar/bar2

and bar/wall contact phases. Furthermore, motion will be periodic and simultaneous events are not3

expected for g0, G0 > v0tW , for, in this case, each persistent contact phase completes before the next4

begins.5

The computation of the system motion requires that of contact closure and opening times (event6

times). These can be established by composition of motion phases. Bars with b ∈ {2, . . . , B − 1}7

experience four contact phases with their immediate neighbors over a period of motion, two in the8

positive direction, two in the negative direction. These occur at times that, modulo the motion period,9

read10

b− 1/b : tc,1 = (b− 1)
g0
v0

+ (b− 2)tW , b/b+ 1 : tc,2 = tc,1 +
g0
v0

+ tW ,

b+ 1/b : tc,3 = tc,2 + 2

(
tW +

G0

v0

)
+ 2 (B − b− 1)

(
tW +

g0
v0

)
, b/b− 1 : tc,4 = tc,3 +

g0
v0

+ tW .

(36)
Bars 1 and B experience only three contact phases over a period. These take place at times (again,11

modulo the motion period)12

1/2 : tc,1 =
g0
v0
, B − 1/B : tc,1 = (B − 1)

g0
v0

+ (B − 2)tW ,

2/1 : tc,2 = (2B − 3)
g0
v0

+ (2B − 2)tW + 2
G0

v0
, B/wall : tc,2 = tc,1 +

G0

v0
+ tW ,

1/wall : tc,3 = tc,2 + 2tW +
g0
v0

+
G0

v0
, B/B − 1 : tc,3 = tc,2 +

G0

v0
+ 2tW .

(37)

The motion period is readily shown to be13

T = 4
G0

v0
+ 2(B − 1)

g0
v0

+ 2(B + 1)tW . (38)

It represents the sum of the durations of free flight motion and wave propagation in the system. The14

displacement field merely follows from the time integration of the piecewise velocity field.15

Figure 13 shows the evolution of the system motion over a period for B = 5. Time is displayed16

along the horizontal axis while the vertical axis represents the bar positions. Velocity information is17

superimposed using colors. Except when involved in a persistent contact phase (bar/bar or bar/wall),18

the bars have uniform velocity and zero deformation; they behave like rigid bodies. The reason for19

condition g0, G0 > v0tW , to guarantee non simultaneous contact phases, is now evident.20

An interesting perspective of the problem is that of the rigid body motion that can be associated21

with the spatial average of bar motions22

〈bv〉 (t) :=
1

L

ˆ L

0
bv(x, t) dx. (39)

Given the piecewise constant velocity distribution in the bars during persistent contact, the average23

velocity of contacting bars is given by the linear envelope of their velocities prior to and after contact.24

Averaging equations (34) and (35) respectively yields25

〈av〉 (t) = vc

(
1− t− tc

2tW

)
, 〈bv〉 (t) = vc

t− tc
2tW

, t ∈ [tc, tc + 2tW ] , (40)

17



Time evolution of displacement and velocity
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Figure 13: Motion of the system for B = 5 over one period T . Momentum propagates from initially moving bar 1 via the
successive interaction phases, to eventually return to bar 1 that recovers its initial state given the system geometry and
conservativeness, and the identical nature of the bars.

and1

〈bv〉 (t) = vc

(
1− t− tc

tW

)
, t ∈ [tc, tc + 2tW ] , (41)

with contact velocity vc = ±v0 depending on the direction of motion at the initiation of contact. The2

average displacement follows from the time integration of the average velocity field. During contact3

phases, we respectively have4

〈au〉 (t) = vc (t− tc)
(

1− t− tc
4tW

)
, 〈bu〉 (t) = vc

(t− tc)2

4tW
, t ∈ [tc, tc + 2tW ] , (42)

and5

〈bu〉 (t) = vc (t− tc)
(

1− t− tc
2tW

)
, t ∈ [tc, tc + 2tW ] ,

again with vc = ±v0. During free flight phases, a single bar moves with uniform average velocity ±v06

while the others are at rest.7

Figure 14 depicts the exact average motion of a system with B = 5 bars over a duration of two8

periods. It is to be viewed in parallel with Figure 13. The sequential nature of the system motion is well9

observed from the piecewise smooth velocity field, thereby confirming the absence of multiple contact.10

The constrained equations of motion are a simplified version of (8), since there is no structural11

damping nor external forcing. They read12

Mv̇ + (K + KA) u = f0A, v = u̇, (43)

where, again, set A is given by (9) and the contact-related stiffness matrix and forcing term are defined13

in equation (10). Matrices M,K ∈ RBm×Bm refer to the global mass and stiffness matrices of the14

multibody problem; that is, the B times diagonal repetition of bM, bK ∈ Rm×m, the assembled matrices15

for a single bar on the basis of the elementary matrices given in (31). The initial conditions are defined16

as17

bu0 = 0, b = 1, . . . , B, 1v0 = 1v0, bv0 = 0, b = 2, . . . , B, (44)

where vector 1 ∈ Rm has m unit entries, and the problem has B + 1 contact interfaces, requiring18

W ∈ RBm×(B+1),g0 ∈ RB+1.19

In the setting of the discrete problem, a counterpart to equation (39) can be obtained by projection20

of the velocity field of bar b into its mass matrix21

〈bṽ〉 (tn) =
1

bm
1T bM bvn (45)

18
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Figure 14: Average motion of the bar centers of gravity over two periods, for B = 5. Scaling corresponds to
(v0, G0, g0, L, c0) = (0.05, 0.125, 0.075, 1, 1).

and normalization by its mass bm =
∑
k,l bMkl. Vector 1T plays the role of a summation operator.1

Except for bodies in contact with a rigid side wall, the averaging operation is equivalent to extracting2

the rigid body component of the bar motion, for the eigenmode associated with rigid body motion is3

parallel to 1. During persistent contact, the bodies colliding the side walls cannot experience rigid body4

motion, and the operation is a mere averaging projection weighted by the mass matrix entries. The same5

formula applies to compute the average displacement field at the center of gravity by substitution of the6

velocity field with the displacement field, vn ← un.7

To compare the numerical response with the analytical one, we introduce the following dimensionless8

error norm9

E(t) :=
1

B

B∑
b=1

(
|〈bũ〉 − 〈bu〉|√

g0G0
+
|〈bṽ〉 − 〈bv〉|

v0

)
, (46)

where field variables with an overhead tilde refer to the finite element response and others to the analytical10

solution. Figure 15 shows the simulation results obtained with the two integration schemes presented11

in Section 3.1. Identical timestepping and root-solving parameters have been used for both simulations.12

The timestep was chosen so that there are at least 5 computed point per lowest eigenfrequency of the13

system, whatever the contact configuration, and (gTol, tTol) = (10−8, 10−8). Three configurations have14

been considered for the integration schemes, ρ∞ ∈ {0, 0.5, 1.0} and the contact stiffness was set to 10015

times the largest component of the stiffness matrix. The model parameters are identical to those used16

in Figure 14, namely (v0, G0, g0, L, c0) = (0.05, 0.125, 0.075, 1, 1). The 2-level BoTr scheme produces17

significantly more accurate results than the generalized-α one, at equivalent spectral radius at infinite18

frequency. Simulation performances are reported in Table 3. Except for the conservative setting, the19

generalized-α scheme requires less computational effort than the 2-level BoTr scheme. This is to be20

credited to the higher effective damping of the scheme that reduces chattering during persistent contact21

and the total number of increments to completion of the computation. In the conservative setting, the22

opposite score is observed. Even though the total number of increments is of the same order for both23

schemes, the 2-level BoTr scheme is about 70% faster than the 3-level generalized-α scheme. This results24

from the higher cost of event localization with the 3-level scheme than with the 2-level scheme.25

ρ∞ 1.0 0.5 0.0 1.0 0.5 0.0

Increment number 59330 41089 22993 58338 22841 14943
CPU time (norm.) 9.50 7.59 3.00 13.60 3.63 1.00

Integration scheme 2-level BoTr Generalized-α

Table 3: Influence of the integration scheme and the numerical damping on the procedure performance.

Selection of the integration scheme and its numerical setting should thus be conducted in accordance26

with the simulation purpose. In light of the presented results, the generalized-α scheme with ρ∞ = 0 is27

likely to be a good candidate for the fast computation of coarse results, whereas the 2-level BoTr scheme28

with some dissipation ρ∞ ∈ [0.5, 1) will be preferred when more accurate responses are desired.29

19
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Figure 15: Evolution of the numerical error, according to equation (46), for B = 5 and model parameters (v0, G0, g0, L, c0) =
(0.05, 0.125, 0.075, 1, 1). Each bar is modeled using 100 linear finite elements, the root-solving tolerances are set to
(gTol, tTol) = (10−8, 10−8) and the timestep h is chosen such that there are at least 5 computed points per lowest
eigenperiod of the system, whatever its contact configuration, yielding (h, hred) = (5.13 · 10−3, 4.01 · 10−4). The 2-level
BoTr scheme achieves significantly lower error levels than the generalized-α scheme, for equivalent ρ∞.
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Figure 16: Slip surface joint used in steel and concrete structures to prevent excessive thermal stressing.

4.3. Earthquake engineering1

The third considered application belongs to the field of earthquake engineering. It is that of a building2

subject to horizontal ground acceleration. The building is assumed to comprise two main substructures3

connected by slip surface joints that provide the necessary dilation freedom to withstand differential4

movement due to thermal changes without engendering excessive stressing of the structure. Figure 165

illustrates the typical geometry of the joints used in buildings. They allow floor movement in a given6

direction through slipping on a low friction pad. However, should this movement be too large, structural7

pounding (negative differential movement larger than dilation gap) or floor collapse (positive differential8

movement larger than support overlap) could occur. Both situations prove detrimental to the structural9

integrity of the building. Their risk of occurrence should thus be evaluated as part of the building design10

process whenever seismic activity is expected at the construction site.11

For simplicity, we consider a 2-dimensional representation of a building in this example. There is12

nonetheless no restriction for extension to a 3-dimensional model. Figure 17 details the geometry of13

the building and its first eigenmodes and eigenfrequencies. Euler beam elements with 2 nodes (cubic14

Hermite interpolation) [29, 31] have been used to model the structural features of the building. These15

elements have three degrees of freedom per node, namely the displacements along and transverse to16

the beam segment and the in-plane rotation at the beam extremity. After appropriate rotation, these17

can be matched to the global axes of the 2-dimensional problem that are defined by the horizontal,18

vertical and out-of-plane directions; see the definitions of uh, uv, uz in Figure 17. Given the loading19

nature (excitation through building foundation), horizontal displacements are defined relatively to the20

ground. Both substructures feature the same structural elements (reinforced concrete columns and floor21

20



Mode 1, f=0.55 Hz Mode 2, f=0.67 Hz
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Figure 17: 18-story building with 10 horizontal spans. The left and right substructures are free to move horizontally at
slip surface joints ( ). The unequal width of the building substructures results in different vibratory responses for each
subsystem that can cause structural pounding or collapse under ground excitation.
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Figure 18: Ground pseudo-acceleration response spectrum and two realizations (left), following Eurocode 8 [48] (type 1,
subsoil A, PGA = 0.1g), and acceleration time series corresponding to the two realizations given in the spectrum plot.

beams, see cross sections in Figure 17) and are subject to the same nominal static load. The building1

is 18-story tall; however, its left substructure is fifty percent wider than its right one. Consequent to2

this width difference is a discrepancy between the substructure eigenresponses and the possibility of3

structural pounding or floor collapse under ground excitation, through differential motion.4

The equations of motion governing the problem read5

Mv̇ + Cv + Ku = M1h%− κW
[
g0 + WTu

]
− , v = u̇. (47)

Boundary conditions are imposed by elimination of the translational degrees of freedom connected to6

the ground, yielding m = 1775 for the simulations subsequently presented. Rayleigh damping [31, 47] is7

added, with five percent of critical damping on the first two eigenmodes. The effect of gravity is neglected8

before the importance of the building response to ground motion. Initial conditions are therefore set to9

rest conditions, u0 = v0 = 0. Ground acceleration is denoted by % while vector 1h ∈ Rm contains zero10

entries but at rows corresponding to horizontal displacement degrees of freedom uh where it has unit11

entries. The accelerograms defining the ground acceleration have been numerically generated by filtering12

of a random process so as to target a given pseudo-acceleration response spectrum. This spectrum follows13

the recommendations of Eurocode 8 [48] (type 1, subsoil A, PGA = 0.1g). Figure 18 shows the target14

spectrum (blue line) and the response spectra of two realizations (red and green lines); time series are15

also displayed for the two realizations. Gap functions are defined on horizontal degrees of freedom that16

coincide with slip surface joints in a number equal to the floor number, q = 18. Relative displacements17

can be used for their definition, as the foundations of both substructures experience the same horizontal18

motion. Vertical displacements are neglected in the definition of the gap functions, for the building19

response is predominantly horizontal.20

For the purpose of this example, the initial gap vector is considered as a design parameter of the21
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Figure 19: Typical evolution of the gap functions during seismic activity. Each line corresponds to a floor number; the larger
the gap opening, the higher floor the result relates to. The dissipative 2-level BoTr scheme was used for the simulations,
with ρ∞ = 0.5 and at least 2.5 points per lowest eigenperiod. The contact stiffness was set to 100 times the maximum
entry of the global stiffness matrix.

building, notwithstanding thermal dilation considerations. Its influence on the occurrence of pounding1

and on the magnitude of positive differential movement is assessed.2

Figure 19 displays the evolution of all gap functions over the duration of the quake, for realization 13

depicted in Figure 18. The 2-level BoTr scheme with ρ∞ = 0.5 has been used with at least 2.5 computed4

points per minimum eigenperiod of the system and the contact stiffness set to 100 times the largest entry5

of the stiffness matrix. During free flight phases, the time distance between peaks is of the same order6

of magnitude as the eigenperiods of the first two modes, see Figure 17. Also, during positive peaks, the7

differential movements at slip surface joints scale with the elevation of the floor they respectively relate8

to, with a maximum magnitude at the top floor. Both arguments confirm that the building response is9

dominated by the first two eigenmodes, whose deformation envelope is similar to the first mode of a fixed-10

free beam. Such low frequency response is typical for buildings subject to seismic activity. Consequently,11

structural pounding also typically appears first at the roof level. As a result of the complex external12

excitation and the finite accuracy of the event-localization procedure, simulations have revealed the13

simultaneous occurrence of events. These have confirmed the robustness of the proposed procedure to14

such algorithmic complications.15

Figure 20 represents the maximum positive differential movement over all 18 gap functions and16

over the duration of the seismic activity for several values of the initial gap opening using the same17

simulation parameters as for Figure 19. Simulations were performed for 10 realizations of the ground18

acceleration. Results show that the occurrence of structural pounding reduces the maximal positive19

differential movement at the slip surface joint, which saturates at about g0 = 8 cm, the initial clearance20

for which pounding is prevented. This result is nothing but a consequence of the inertial nature of the21

substructure motions. Vibration growth in a mechanical structure is not instantaneous in the presence22

of inertia; it builds up in finite time. However, the presence of unilateral constraints alters this growth23

process which results in a reduction of the maximal differential movement. Accordingly, if the slip surface24

joints are designed so that they can damp the effects of pounding and prevent excessive damage that25

would endanger the building structural integrity, limited dilation clearances and support overlaps can26

be used. If pounding is to be avoided at all costs, clearances and overlaps should then be chosen large27

enough so that differential movement in both directions can be borne by the joint. Alternatively, other28

technologies specifically designed to withstand seismic activity can be used.29

5. Conclusions30

This paper presents a procedure dedicated to the time integration of problems of linear structural31

dynamics subject to unilateral elastic constraints. The retained approach is that of event-driven in-32

tegration, since the end application the procedure will be applied to—percussive drilling, not covered33

in this paper, however—requires the trigger of elastic constraints from arbitrary functions of the state34

(displacement and velocity). To that end, the contact problem is reformulated as a hybrid model by use35

of an active set strategy, i.e., contact is either active or inactive; the occurrence of contact openings and36

closures must be tracked by the integration procedure through root solving. For the purpose of event de-37

tection and event localization (the two root solving steps), cubic Hermite interpolation is used to provide38

22
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Figure 20: Influence of the initial gap on the maximum maximorum positive excursion attained during earthquake sim-
ulation, i.e., the maximum positive differential displacement value over all gap functions over the entire duration of the
quake.

a continuous extension of the displacement field that defines gap openings in combination with a specific1

iterative event-localization strategy that localizes events after they have occurred. Although presented in2

the linear framework, these two essential elements could be included in a more generic solver addressing3

nonlinear structural problems. Given the use of Hermite interpolation for the continuous extension, the4

proposed integration procedure is best combined with one-step integration schemes as only information5

at the timestep extremities are exploited to construct the continuous extension. Important algorithmic6

steps are presented in the paper and a MATLAB implementation is provided online (see Appendix). In7

particular, the handling of numerical accumulation and numerical grazing are addressed in detail.8

By design, the event-driven integration procedure offers several advantages. First, it naturally over-9

comes the energetic instabilities arising from unilateral elastic constraints; as demonstrated, the use of10

stringent tolerances for event localization permits to control the energy drift ensuing from the closures11

and openings of contact interfaces. Second, it exploits the piecewise linear character of the governing12

equations. As such, no nonlinear solver, e.g., based on Newton-Raphson iteration, is required to march13

the equations of motion in time. Additionally, in virtue of the first statement, global stability of the14

procedure is guaranteed provided the embedded integration scheme is exploited in its stability region.15

Unconditionally stable implicit schemes, such as the 2-level BoTr or the generalized-α schemes that we16

briefly recall in the paper, are therefore preferably used, even though the proposed algorithm can be used17

with conditionally stable explicit ones as well. Third, although the proposed continuous extension covers18

the displacement field only, it can readily be extended to the velocity field, as the equation of motion19

directly provides the acceleration field required to form the Hermite interpolants to the velocity field20

(provided the mass matrix is positive definite). This addition enables the adaption of the event-driven21

procedure to handle arbitrary event functions involving the velocity field, as is the case in percussive22

drilling. Thus, not only is the proposed procedure adapted to the simulation of structural dynamics in23

presence of unilateral elastic constraints but also is it suitable for the simulation of hybrid linear systems24

governed by second-order ODEs.25

The method also presents a couple of downsides. Unless specific safeguards are implemented, it26

fails at simulating system trajectories exhibiting Zeno behavior. Additionally, the computational burden27

significantly increases with the number of contact interfaces. Indeed, event-detection must be performed28

for each contact interface, at each timestep; this requires solving a low-dimension eigenvalue companion29

problem which can prove expensive, as the use of floating point arithmetic prevents a robust utilization of30

the conventional Sturm sequences and the likes for the detection of polynomial roots in a specific interval.31

Also, as demonstrated in the proposed application examples, the efficiency of the method is significantly32

reduced in the presence of constraint chatter. This situation, that arises in the presence of persistent33

contact and a stiff constraint, is, nevertheless, seriously improved by the use of numerically dissipative34

time integration schemes, as they provide the necessary damping to tame the chattering oscillations.35

For these two reasons, it is likely that large scale problems with numerous unilateral elastic contact36

constraints will be more efficiently handled with other approaches dedicated to contact dynamics, e.g.,37

the EMCA and EDMC schemes [4, 32].38

In the sequel of the algorithmic developments, the paper proposes three application examples that39

23



span the whole range of event handling complexity. The elastic bouncing bar benchmark, a 1-dimensional1

wave propagation problem, features a single contact interface and the occurrence of persistent contact.2

Assessment of numerical damping influence reveals that it dampens chattering and increases the accuracy3

of the predicted contact force. Also, the analysis of the energetic drift of the system shows that the4

estimate provided for the choice of the event-localization tolerance is very conservative. The next example5

is inspired from Newton’s cradle. Featuring multiple contact interfaces, the problem is, however, designed6

such that simultaneous events should not take place. Elements of its analytical solution are provided so7

that it can be used as a benchmark for other simulation solutions. A performance comparison between8

the two reviewed integration schemes shows that, in the dissipative setting, the generalized-α scheme is9

less accurate than the 2-level BoTr scheme but nonetheless computationally cheaper even though it is a10

3-level scheme. Coarse solutions are thus preferably computed with the former scheme whereas the latter11

will be used for increased accuracy. The third illustration belongs to the field of earthquake engineering.12

The presented procedure is employed to simulate the response of a fictitious building to an earthquake.13

Multiple contact interfaces are defined and simultaneous events do occur. Completion of the simulations14

shows the robustness of the proposed computation strategy (as do previous examples). It also illustrates15

the influence of unilateral elastic constraints on differential movements of building substructures.16
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MATLAB routines53

The MATLAB routines that have been used to generate the results of Section 4 are available at http:54

//hdl.handle.net/2268/159502. The archive file contains seven files, five of which being MATLAB55

functions. The remaining two are model data for the earthquake engineering example. As much as56

possible, the variable names in the code follow those used in the paper. The m-files are commented57

in such a way that variable descriptions are self-sufficient. Defensive coding was not enforced. Generic58

errors will be generated if input variables are incorrectly defined or issues with the file I/O arise.59

timeIntegration.m & timeIntegration_NoBa13.m60

These files contain an implementation of the event-driven integration procedure described in the61

paper, the first for three implicit schemes and the latter with the explicit scheme proposed by Noh-62

Bathe [37]. Both functions take the same four input variables and outputs one.63

fHeader = timeIntegration(modelParam,integParam,rsParam,header)64

fHeader = timeIntegration_NoBa13(modelParam,integParam,rsParam,header)65

25



modelParam Data structure that contains all parameters related to model definition: K, C, M, W, u0,
v0, g0, k_con, fHdle. Particular to the implementation is the definition of the external
forcing f that is done via the function handle fHdle. Variable k_con contains the diagonal
elements of κ. Should all entries of k_con and g0 be identical, a single scalar value can
be specified; it will automatically be duplicated over the number of gap functions q.

1

integParam Vector that contains the parameters relative to the time integration scheme (in index-
ing order): schemeID, rho, hCp, hRed, nRedH, hOut, tf. Three implicit integration
schemes are available: trapezoidal method (schemeID = 0), 2-level BoTr (schemeID = 1),
generalized-α (schemeID = 2); and the Noh-Bathe explicit scheme (schemeID = 3).
Timesteps for free flight and active constraint phases are input as hCp, hRed. Integer
nRedH specifies the number of increments taken in a free flight phase required for hCp to
be used and factorization of matrices H0,H1 to be performed (only for implicit schemes).
Timestep hOut defines the distance between two output points outside event localization
(data is output at each localized event) and tf is the final simulation time.

2

rsParam Vector with the root-solving parameters gTol, maxIter, tTol (in indexing order). max-

Iter defines the maximum number of iterations accepted during the iterative event-
localization procedure.

3

header String that defines the problem name. It serves as a basis for the naming of the results
data files.

4

fHeader Prefix string of the results data files. It is identical to header but with blank spaces
replaced by underscores.

5

All computational outputs are sent to data files on the disk. A log file and seven history files are created.6

The former (fHeader.log) contains information about localized events and computation performance,7

while the latter record data history (fHeader_XXX.his, with XXX ∈ {time, displacements, velocities,8

flags, gaps, nrg, ctcForces). Their loading requires the knowledge of the model dimension m and the9

number of contact interfaces q.10

The contact forces being computed at the end of the timestep, their reported values might be mean-11

ingless in case chattering occurs (with conservative schemes). Nevertheless, this non-sense does not affect12

the validity of the computed state variables (nodal displacements and velocities).13

bouncingBar.m14

Driver file for the problem of Section 4.1. It defines the model as well as the integration parameters and15

passes them to timeIntegration.m or timeIntegration_NoBa13.m according to parameter schemeID.16

Upon completion of the integration procedure, results are loaded and output to the main workspace17

under the form of a data structure. The evolution of the positions of the bar extremities and center of18

gravity are plotted. The function prototype reads19

results = bouncingBar20

newtonCradle.m21

This is the main procedure for the problem of Section 4.2. It defines the model and the integration22

parameters, and passes them to timeIntegration.m or timeIntegration_NoBa13.m according to pa-23

rameter schemeID. Upon completion of the integration procedure, results are loaded and averaging of24

the bar positions and velocities is conducted. These are plotted against the analytical response before25

the function returns the results to the main workspace under the form of a data structure. The function26

takes no argument27

results = newtonCradle28

quakeSimulation.m29

Driver file for the problem of Section 4.3. It loads the model definition from buildingModel.mat30

and the accelerogram realizations from ACCEL.ACG, and defines the integration parameters, then calls31

timeIntegration.m or timeIntegration_NoBa13.m. Rayleigh damping is discarded if the explicit32

scheme is selected as it puts too stringent constraints on the stable timestep of the integration scheme.33

Upon completion of the integration procedure, results are loaded. The evolution of the q = 18 gap34

functions is plotted before the function returns the results to the main workspace under the form of a35

data structure. The function prototype reads36

results = quakeSimulation37

26


