[en] This paper reviews the current knowledge about the mechanisms of anesthesia-induced alteration of consciousness. It is now evident that hypnotic anesthetic agents have specific brain targets whose function is hierarchically altered in a dose-dependent manner. Higher order networks, thought to be involved in mental content generation, as well as sub-cortical networks involved in thalamic activity regulation seems to be affected first by increasing concentrations of hypnotic agents that enhance inhibitory neurotransmission. Lower order sensory networks are preserved, including thalamo-cortical connectivity into those networks, even at concentrations that suppress responsiveness, but cross-modal sensory interactions are inhibited. Thalamo-cortical connectivity into the consciousness networks decreases with increasing concentrations of those agents, and is transformed into an anti-correlated activity between the thalamus and the cortex for the deepest levels of sedation, when the subject is non responsive. Future will tell us whether these brain function alterations are also observed with hypnotic agents that mainly inhibit excitatory neurotransmission. The link between the observations made using fMRI and the identified biochemical targets of hypnotic anesthetic agents still remains to be identified.
Disciplines :
Neurology Anesthesia & intensive care
Author, co-author :
BONHOMME, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Anesthésie et réanimation
BOVEROUX, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Service d'anesthésie - réanimation
Brichant, Jean-François ; Université de Liège - ULiège > Département des sciences cliniques > Anesthésie et réanimation
Laureys, Steven ; Université de Liège - ULiège > Centre de recherches du cyclotron
Boly, Mélanie ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie
Language :
English
Title :
Neural correlates of consciousness during general anesthesia using functional magnetic resonance imaging (fMRI).
Alkire M.T., Haier R.J., Barker S.J., Shah N.K., Wu J.C., Kao Y.J. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology, 82: 393-403, 1995.
Alkire M.T., Haier R.J., Shah N.K., Anderson C.T. Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology, 86: 549-557, 1997.
Alkire M.T. Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology, 89: 323-333, 1998.
Alkire M.T., Haier R.J., Fallon J.H. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn., 9: 370-386, 2000.
Alkire M.T., Gruver R., Miller J., McReynolds J.R., Hahn E.L., Cahill L. Neuroimaging analysis of an anesthetic gas that blocks human emotional memory. Proc. Natl. Acad. Sci. U S A, 105: 1722-1727, 2008a.
Alkire M.T., Hudetz A.G., Tononi G. Consciousness and anesthesia. Science, 322: 876-880, 2008b.
Antognini J.F., Buonocore M.H., Disbrow E.A., Carstens E. Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study. Life Sci., 61: L-54, 1997.
Baars B.J., Ramsoy T.Z., Laureys S. Brain, conscious experience and the observing self. Trends Neurosci., 26: 671-675, 2003.
Bennett C., Voss L.J., Barnard J.P., Sleigh J.W. Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science. Anesth. Analg., 109: 539-550, 2009.
Boly M., Phillips C., Balteau E., Schnakers C., Degueldre C., Moonen G., Luxen A., Peigneux P., Faymonville M.E., Maquet P., Laureys S. Consciousness and cerebral baseline activity fluctuations. Hum. Brain. Mapp., 29: 868-874, 2008.
Bonhomme V., Fiset P., Meuret P., Backman S., Plourde G., Paus T., Bushnell M.C., Evans A.C. Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J. Neurophysiol., 85: 1299-1308, 2001.
Bonhomme V., Maquet P., Phillips C., Plenevaux A., Hans P., Luxen A., Lamy M., Laureys S. The effect of clonidine infusion on distribution of regional cerebral blood flow in volunteers. Anesth. Analg., 106: 899-909, 2008.
Boveroux P., Bonhomme V., Boly M., Vanhaudenhuyse A., Maquet P., Laureys S. Brain function in physiologically, pharmacologically, and pathologically altered states of consciousness. Int. Anesthesiol. Clin., 46: 131-146, 2008.
Boveroux P., Vanhaudenhuyse A., Bruno M.A., Noirhomme Q., Lauwick S., Luxen A., Degueldre C., Plenevaux A., Schnakers C., Phillips C., Brichant J.F., Bonhomme V., Maquet P., Greicius M.D., Laureys S., Boly M. Breakdown of within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology, 113: 1038-1053, 2010.
Brown E.N., Lydic R., Schiff N.D. General anesthesia, sleep, and coma. N. Engl. J. Med., 363: 2638-2650, 2010.
Cavanna A.E. The precuneus and consciousness. CNS Spectr., 12: 545-552, 2007.
Coghill R.C., Talbot J.D., Evans A.C., Meyer E., Gjedde A., Bushnell M.C., Duncan G.H. Distributed processing of pain and vibration by the human brain. J. Neurosci., 14: 4095-4108, 1994.
Cold G.E., Eskesen V., Eriksen H., Amtoft O., Madsen J.B. CBF and CMRO2 during continuous etomidate infusion supplemented with N2O and fentanyl in patients with supratentorial cerebral tumour. A dose-response study. Acta Anaesthesiol. Scand., 29: 490-494, 1985.
Damoiseaux J.S., Rombouts S.A., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Beckmann C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U S A, 103: 13848-13853, 2006.
Demertzi A., Soddu A., Faymonville M.E., Bahri M.A., Gosseries O., Vanhaudenhuyse A., Phillips C., Maquet P., Noirhomme Q., Luxen A., Laureys S. Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. Prog. Brain Res., 193: 309-322, 2011.
Deshpande G., Kerssens C., Sebel P.S., Hu X. Altered local coherence in the default mode network due to sevoflurane anesthesia. Brain Res., 1318: 110-121, 2010.
Dueck M.H., Petzke F., Gerbershagen H.J., Paul M., Hesselmann V., Girnus R., Krug B., Sorger B., Goebel R., Lehrke R., Sturm V., Boerner U. Propofol attenuates responses of the auditory cortex to acoustic stimulation in a dose-dependent manner: a FMRI study. Acta Anaesthesiol. Scand., 49: 784-791, 2005.
Eger E.I., Sonner J.M. Anaesthesia defined (gentlemen, this is no humbug). Best Pract. Res. Clin. Anaesthesiol., 20: 23-29, 2006.
Faymonville M.E., Roediger L., Del F.G., Delgueldre C., Phillips C., Lamy M., Luxen A., Maquet P., Laureys S. Increased cerebral functional connectivity underlying the antinociceptive effects of hypnosis. Brain Res. Cogn. Brain Res., 17: 255-262, 2003.
Faymonville M.E., Boly M., Laureys S. Functional neuroanatomy of the hypnotic state. J. Physiol. Paris, 99: 463-469, 2006.
Ferrarelli F., Massimini M., Sarasso S., Casali A., Riedner B.A., Angelini G., Tononi G., Pearce R.A. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. U S A, 107: 2681-2686, 2010.
Fiset P., Paus T., Daloze T., Plourde G., Meuret P., Bonhomme V., Hajj-Ali N., Backman S.B., Evans A.C. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci., 19: 5506-5513, 1999.
Forster A., Juge O., Morel D. Effects of midazolam on cerebral blood flow in human volunteers. Anesthesiology, 56: 453-455, 1982.
Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van E., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U S A, 102: 9673-9678, 2005.
Franks N.P. Molecular targets underlying general anaesthesia. Br. J. Pharmacol., 147 Suppl 1: S72-S81, 2006.
Fu C.H., Abel K.M., Allin M.P., Gasston D., Costafreda S.G., Suckling J., Williams S.C., McGuire P.K. Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: a functional magnetic resonance imaging study. Psychopharmacology (Berl), 183: 92-102, 2005.
Heinke W., Schwarzbauer C. Subanesthetic isoflurane affects task-induced brain activation in a highly specific manner: a functional magnetic resonance imaging study. Anesthesiology, 94: 973-981, 2001.
Heinke W., Fiebach C.J., Schwarzbauer C., Meyer M., Olthoff D., Alter K. Sequential effects of propofol on functional brain activation induced by auditory language processing: an event-related functional magnetic resonance imaging study. Br. J. Anaesth., 92: 641-650, 2004.
Heinke W. and Koelsch S. The effects of anesthetics on brain activity and cognitive function. Curr. Opin. Anaesthesiol., 18: 625-631, 2005.
Hirota K. Special cases: ketamine, nitrous oxide and xenon. Best Pract. Res. Clin. Anaesthesiol., 20: 69-79, 2006.
Honey G.D., Honey R.A., O'Loughlin C., Sharar S.R., Kumaran D., Suckling J., Menon D.K., Sleator C., Bullmore E.T., Fletcher P.C. Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an fMRI study. Cereb. Cortex, 15: 749-759, 2005.
Kaisti K.K., Langsjo J.W., Aalto S., Oikonen V., Sipila H., Teras M., Hinkka S., Metsahonkala L., Scheinin H. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology, 99: 603-613, 2003.
Kerssens C., Hamann S., Peltier S., Hu X.P., Byas-Smith M.G., Sebel P.S. Attenuated brain response to auditory word stimulation with sevoflurane: a functional magnetic resonance imaging study in humans. Anesthesiology, 103: 11-19, 2005.
Koike T., Kan S., Misaki M., Miyauchi S. Connectivity pattern changes in default-mode network with deep non-REM and REM sleep. Neurosci. Res., 69: 322-330, 2011.
Kopp L.A., Yost C.S., Kindler C.H. Anaesthetic mechanisms: update on the challenge of unravelling the mystery of anaesthesia. Eur. J. Anaesthesiol., 26: 807-820, 2009.
Langsjo J.W., Kaisti K.K., Aalto S., Hinkka S., Aantaa R., Oikonen V., Sipila H., Kurki T., Silvanto M., Scheinin H. Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology, 99: 614-623, 2003.
Langsjo J.W., Maksimow A., Salmi E., Kaisti K., Aalto S., Oikonen V., Hinkka S., Aantaa R., Sipila H., Viljanen T., Parkkola R., Scheinin H. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology, 103: 258-268, 2005.
Laureys S., Celesia G.G., Cohadon F., Lavrijsen J., Leon-Carrion J., Sannita W.G., Sazbon L., Schmutzhard E., von Wild K.R., Zeman A., Dolce G. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med., 8: 68, 2010.
Lydic R. and Baghdoyan H.A. Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology, 103: 1268-1295, 2005.
Martuzzi R., Ramani R., Qiu M., Rajeevan N., Constable R.T. Functional connectivity and alterations in baseline brain state in humans. Neuroimage, 49: 823-834, 2010.
Mason M.F., Norton M.I., Van Horn J.D., Wegner D.M., Grafton S.T., Macrae C.N. Wandering minds: the default network and stimulus-independent thought. Science, 315: 393-395, 2007.
McGeown W.J., Mazzoni G., Venneri A., Kirsch I. Hypnotic induction decreases anterior default mode activity. Conscious. Cogn., 18: 848-855, 2009.
Mhuircheartaigh R.N., Rosenorn-Lanng D., Wise R., Jbabdi S., Rogers R., Tracey I. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J. Neurosci., 30: 9095-9102, 2010.
Murphy M., Bruno M.A., Riedner B.A., Boveroux P., Noirhomme Q., Landsness E.C., Brichant J.F., Phillips C., Massimini M., Laureys S., Tononi G., Boly M. Propofol anesthesia and sleep: a highdensity EEG study. Sleep, 34: 283-91, 2011.
Newberg L.A., Milde J.H., Michenfelder J.D. The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology, 59: 23-28, 1983.
Paulus M.P., Feinstein J.S., Castillo G., Simmons A.N., Stein M.B. Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch. Gen. Psychiatry., 62: 282-288, 2005.
Peltier S.J., Kerssens C., Hamann S.B., Sebel P.S., Byas-Smith M., Hu X. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport, 16: 285-288, 2005.
Pierce E.C., Jr., Lambertsen C.J., Deutsch S., Chase P.E., Linde H.W., Dripps R.D., Price H.L. Cerebral circulation and metabolism during thiopental anesthesia and hyper-ventilation in man. J. Clin. Invest., 41: 1664-1671, 1962.
Plourde G., Belin P., Chartrand D., Fiset P., Backman S.B., Xie G., and Zatorre R.J. Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology, 104: 448-457, 2006.
Ramani R., Qiu M., and Constable R.T. Sevoflurane 0.25 MAC preferentially affects higher order association areas: a functional magnetic resonance imaging study in volunteers. Anesth Analg, 105: 648-655, 2007.
Rampil I.J. Electroencephalogram. n: Albin M.S. (Ed.). Textbook of neuroanesthesia: With Neurosurgical and Neuroscience Perspectives. New York, The McGraw-Hill Companies: 193-219, 1997.
Solt K., Forman S.A. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr. Opin. Anaesthesiol., 20: 300-306, 2007.
Sperling R., Greve D., Dale A., Killiany R., Holmes J., Rosas H.D., Cocchiarella A., Firth P., Rosen B., Lake S., Lange N., Routledge C., Albert M. Functional MRI detection of pharmacologically induced memory impairment. Proc. Natl. Acad. Sci. U S A, 99: 455-460, 2002.
Steriade M., McCormick D.A., Sejnowski T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science, 262: 679-685, 1993.
Tononi G. Consciousness as integrated information: a provisional manifesto. Biol. Bull., 215: 216-242, 2008.
Vanhaudenhuyse A., Noirhomme Q., Tshibanda L.J., Bruno M.A., Boveroux P., Schnakers C., Soddu A., Perlbarg V., Ledoux D., Brichant J.F., Moonen G., Maquet P., Greicius M.D., Laureys S., Boly M. Default network connectivity reflects the level of consciousness in non-communicative braindamaged patients. Brain, 133: 161-171, 2010.
Velly L.J., Rey M.F., Bruder N.J., Gouvitsos F.A., Witjas T., Regis J.M., Peragut J.C., Gouin F.M. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology, 107: 202-212, 2007.
Veselis R.A., Feshchenko V.A., Reinsel R.A., Dnistrian A.M., Beattie B., Akhurst T.J. Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesth. Analg., 99: 399-408, 2004.
Wise R.G., Lujan B.J., Schweinhardt P., Peskett G.D., Rogers R., Tracey I. The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magn. Reson. Imaging, 25: 801-810, 2007.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.