[en] The mouse model of laser-induced choroidal neovascularization (CNV) has been used extensively in studies of the exudative form of age-related macular degeneration (AMD). This experimental in vivo model relies on laser injury to perforate Bruch's membrane, resulting in subretinal blood vessel recruitment from the choroid. By recapitulating the main features of the exudative form of human AMD, this assay has served as the backbone for testing antiangiogenic therapies. This standardized protocol can be applied to transgenic mice and can include treatments with drugs, recombinant proteins, antibodies, adenoviruses and pre-microRNAs to aid in the search for new molecular regulators and the identification of novel targets for innovative treatments. This robust assay requires 7-14 d to complete, depending on the treatment applied and whether immunostaining is performed. This protocol includes details of how to induce CNV, including laser induction, lesion excision, processing and different approaches to quantify neoformed vasculature.
Disciplines :
Ophthalmology
Author, co-author :
LAMBERT, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Ophtalmologie
Lecomte, Julie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Hansen, Sylvain ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Blacher, Silvia ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Struman, Ingrid ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Sounni, Nor Eddine ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Rozet, Eric ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
De Tullio, Pascal ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Foidart, Jean-Michel ; Université de Liège - ULiège > Département des sciences cliniques > Gynécologie - Obstétrique
Rakic, Jean-Marie ; Université de Liège - ULiège > Département des sciences cliniques > Ophtalmologie
Noël, Agnès ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Language :
English
Title :
Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice.
Resnikoff, S. et al. Global data on visual impairment in the year 2002. Bull. World Health Organ. 82, 844-851 (2004). (Pubitemid 39573742)
Friedman, D.S. et al. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122, 564-572 (2004). (Pubitemid 38456293)
de Jong, P.T. Age-related macular degeneration. New Engl. J. Med. 355, 1474-1485 (2006). (Pubitemid 44511562)
Miller, J.W. Age-related macular degeneration revisited-piecing the puzzle: The LXIX Edward Jackson memorial lecture. Am. J. Ophthalmol. 155, 1-35 e13 (2013).
Jost, M. et al. Tumoral and choroidal vascularization: Differential cellular mechanisms involving plasminogen activator inhibitor type I. Am. J. Pathol. 171, 1369-1380 (2007). (Pubitemid 47582909)
Noel, A., Jost, M., Lambert, V., Lecomte, J. & Rakic, J.M. Anti-angiogenic therapy of exudative age-related macular degeneration: Current progress and emerging concepts. Trends Mol. Med. 13, 345-352 (2007). (Pubitemid 47126988)
Pennesi, M.E., Neuringer, M. & Courtney, R.J. Animal models of age related macular degeneration. Mol. Aspects Med. 33, 487-509 (2012).
Tobe, T. et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am. J. Pathol. 153, 1641-1646 (1998). (Pubitemid 28509922)
Saishin, Y. et al. VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J. Cell Physiol. 195, 241-248 (2003). (Pubitemid 36384298)
Heier, J.S. et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119, 2537-2548 (2012).
Slakter, J.S. Anecortave acetate for treating or preventing choroidal neovascularization. Ophthalmol. Clin. North Am. 19, 373-380 (2006). (Pubitemid 44403944)
Slakter, J.S. et al. Anecortave acetate (15 milligrams) versus photodynamic therapy for treatment of subfoveal neovascularization in age-related macular degeneration. Ophthalmology 113, 3-13 (2006). (Pubitemid 43021721)
Sabatel, C. et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE 6, e16979 (2011).
Shi, Y.Y. et al. Monocyte/macrophages promote vasculogenesis in choroidal neovascularization in mice by stimulating SDF-1 expression in RPE cells. Graefe?s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie 249, 1667-1679 (2011).
Apte, R.S., Richter, J., Herndon, J. & Ferguson, T.A. Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med. 3, e310 (2006).
Zhou, J. et al. Neutrophils promote experimental choroidal neovascularization. Mol. Vis. 11, 414-424 (2005). (Pubitemid 41410238)
Machalinska, A. et al. Neural stem/progenitor cells circulating in peripheral blood of patients with neovascular form of AMD: A novel view on pathophysiology. Graefe?s Archive for Clinical and experimental Ophthalmology (Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie) 249, 1785-1794 (2011).
Wang, J. et al. Amyloid beta enhances migration of endothelial progenitor cells by upregulating CX3CR1 in response to fractalkine, which may be associated with development of choroidal neovascularization. Arterioscler. Thromb. Vasc. Biol. 31, e11-e18 (2011).
Lecomte, J. et al. Bone marrow-derived mesenchymal cells and MMP13 contribute to experimental choroidal neovascularization. Cell Mol. Life Sci. 68, 677-686 (2011).
Zhou, B. & Wang, B. Pegaptanib for the treatment of age-related macular degeneration. Exp. Eye Res. 83, 615-619 (2006). (Pubitemid 44183805)
Rosenfeld, P.J., Rich, R.M. & Lalwani, G.A. Ranibizumab: Phase III clinical trial results. Ophthalmol. Clin. North Am. 19, 361-372 (2006). (Pubitemid 44279358)
Lien, S. & Lowman, H.B. Therapeutic anti-VEGF antibodies. Handbook of Experimental Pharmacology 131-150 (2008).
Van de Veire, S. et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 141, 178-190 (2010).
Rakic, J.M. et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 3186-3193 (2003).
Lambert, V. et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. 17, 2290-2292 (2003). (Pubitemid 39561469)
Lambert, V. et al. Influence of plasminogen activator inhibitor type 1 on choroidal neovascularization. FASEB J. 15, 1021-1027 (2001). (Pubitemid 32290790)
Lambert, V. et al. Dose-dependent modulation of choroidal neovascularization by plasminogen activator inhibitor type I: implications for clinical trials. Invest. Ophthalmol. Vis. Sci. 44, 2791-2797 (2003). (Pubitemid 36618445)
Rakic, J.M. et al. Mice without uPA, tPA, or plasminogen genes are resistant to experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 1732-1739 (2003).
Liu, J. et al. Relationship between complement membrane attack complex, chemokine (C-C motif) ligand 2 (CCL2) and vascular endothelial growth factor in mouse model of laser-induced choroidal neovascularization. J. Biol. Chem. 286, 20991-21001 (2011).
Lyzogubov, V.V. et al. Role of ocular complement factor H in a murine model of choroidal neovascularization. Am. J. Pathol. 177, 1870-1880 (2010).
Malek, G. et al. Apolipoprotein E allele-dependent pathogenesis: A model for age-related retinal degeneration. Proc. Natl. Acad. Sci. USA 102, 11900-11905 (2005). (Pubitemid 41170822)
Imamura, Y. et al. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: A model of age-related macular degeneration. Proc. Natl. Acad. Sci. USA 103, 11282-11287 (2006). (Pubitemid 44156510)
Sengupta, N. et al. Paracrine modulation of CXCR4 by IGF-1 and VEGF: implications for choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 51, 2697-2704 (2010).
Qi, X. et al. gamma-Secretase inhibition of murine choroidal neovascularization is associated with reduction of superoxide and proinflammatory cytokines. Invest. Ophthalmol. Vis. Sci. 53, 574-585 (2012).
Luo, L. et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano 7, 3264-3275 (2013).
Hasegawa, E. et al. IL-27 inhibits pathophysiological intraocular neovascularization due to laser burn. J. Leukoc. Biol. 91, 267-273 (2012).
Halkein, J. et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Invest. 123, 2143-2154 (2013).
Espinosa-Heidmann, D.G. et al. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 3586-3592 (2003). (Pubitemid 36909799)
Sakurai, E., Anand, A., Ambati, B.K., van Rooijen, N. & Ambati, J. Macrophage depletion inhibits experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 3578-3585 (2003). (Pubitemid 36909798)
Campochiaro, P.A. The complexity of animal model generation for complex diseases. JAMA 303, 657-658 (2010).
Kwak, N., Okamoto, N., Wood, J.M. & Campochiaro, P.A. VEGF is major stimulator in model of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 41, 3158-3164 (2000).
Miki, K. et al. Effects of intraocular ranibizumab and bevacizumab in transgenic mice expressing human vascular endothelial growth factor. Ophthalmology 116, 1748-1754 (2009).
Espinosa-Heidmann, D.G. et al. Age as an independent risk factor for severity of experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 43, 1567-1573 (2002). (Pubitemid 34462659)
Espinosa-Heidmann, D.G. et al. Gender and estrogen supplementation increases severity of experimental choroidal neovascularization. Exp. Eye Res. 80, 413-423 (2005). (Pubitemid 40249897)
Ridder, W. III, Nusinowitz, S. & Heckenlively, J.R. Causes of cataract development in anesthetized mice. Exp. Eye Res. 75, 365-370 (2002). (Pubitemid 35216454)
Mori, K. et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J. Cell Physiol. 188, 253-263 (2001). (Pubitemid 32622916)
Tomida, D. et al. Suppression of choroidal neovascularization and quantitative and qualitative inhibition of VEGF and CCL2 by heparin. Invest. Ophthalmol. Vis. Sci. 52, 3193-3199 (2011).
Takahashi, H. et al. Contribution of bone-marrow-derived cells to choroidal neovascularization. Biochem. Biophys. Res. Commun. 320, 372-375 (2004). (Pubitemid 38798876)
Sengupta, N. et al. The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 4908-4913 (2003). (Pubitemid 37315308)
Tomita, M. et al. Choroidal neovascularization is provided by bone marrow cells. Stem Cells 22, 21-26 (2004). (Pubitemid 38018778)
Chen, M. et al. Age-and light-dependent development of localised retinal atrophy in CCL2( ?/? )CX3CR1(GFP/GFP) mice. PLoS One 8, e61381 (2013).
Detry, B. et al. Sunitinib inhibits inflammatory corneal lymphangiogenesis. Invest. Ophthalmol. Vis. Sci. 54, 3082-3093 (2013).
Ambati, J. et al. An animal model of age-related macular degeneration in senescent Ccl-2-or Ccr-2-deficient mice. Nat. Med. 9, 1390-1397 (2003). (Pubitemid 37466188)
Du, H. et al. JNK inhibition reduces apoptosis and neovascularization in a murine model of age-related macular degeneration. Proc. Natl. Acad. Sci. USA 110, 2377-2382 (2013).
Zhang, A.H., Sun, H., Qiu, S. & Wang, X.J. Metabolomics in noninvasive breast cancer. Clin. Chim. Acta 424C, 3-7 (2013).
Zhang, X. et al. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochim. Biophys. Acta 1832, 1207-1216 (2013).
O?Connell, T.M. Recent advances in metabolomics in oncology. Bioanalysis 4, 431-451 (2012).
Johnson, C.H. & Gonzalez, F.J. Challenges and opportunities of metabolomics. J. Cell Physiol. 227, 2975-2981 (2012).