[en] Mature heart valves are complex structures consisting of three highly organized extracellular matrix layers primarily composed of collagens, proteoglycans and elastin. Collectively, these diverse matrix components provide all the necessary biomechanical properties for valve function throughout life. In contrast to healthy valves, myxomatous valve disease is the most common cause of mitral valve prolapse in the human population and is characterized by an abnormal abundance of proteoglycans within the valve tri-laminar structure. Despite the clinical significance, the etiology of this phenotype is not known. Scleraxis (Scx) is a basic-helix-loop-helix transcription factor that we previously showed to be required for establishing heart valve structure during remodeling stages of valvulogenesis. In this study, we report that remodeling heart valves from Scx null mice express decreased levels of proteoglycans, particularly chondroitin sulfate proteoglycans (CSPGs), while overexpression in embryonic avian valve precursor cells and adult porcine valve interstitial cells increases CSPGs. Using these systems we further identify that Scx is positively regulated by canonical Tgfbeta2 signaling during this process and this is attenuated by MAPK activity. Finally, we show that Scx is increased in myxomatous valves from human patients and mouse models, and overexpression in human mitral valve interstitial cells modestly increases proteoglycan expression consistent with myxomatous mitral valve phenotypes. Together, these studies identify an important role for Scx in regulating proteoglycans in embryonic and mature valve cells and suggest that imbalanced regulation could influence myxomatous pathogenesis.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Barnette, Damien; Center for Cardiovascular and Pulmonary Res - Columbus - USA
Hulin, Alexia ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire de Biologie des Tissus Conjonctifs > PhD
Ahmed, Ishtiaq; Indiana University School of medecine - Indianapolis, USA
Colige, Alain ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire de Biologie des Tissus Conjonctifs
Azhar, Mohamad; Indianapolis School of Medicine - Indianapolis - USA
LINCOLN, Joy; The Ohio State University, Columbus - USA > Department of Pediatrics
Language :
English
Title :
Tgfbeta-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves.
Lincoln J., Yutzey K.E. Molecular and developmental mechanisms of congenital heart valve disease. Birth Defects Res A Clin Mol Teratol 2011, 91:526-534.
Guy T.S., Hill A.C. Mitral valve prolapse. Annu Rev Med 2012, 63:277-292.
Nasuti J.F., Zhang P.J., Feldman M.D., Pasha T., Khurana J.S., Gorman J.H., et al. Fibrillin and other matrix proteins in mitral valve prolapse syndrome. Ann Thorac Surg 2004, 77:532-536.
Akhtar S., Meek K.M., James V. Ultrastructure abnormalities in proteoglycans, collagen fibrils, and elastic fibers in normal and myxomatous mitral valve chordae tendineae. Cardiovasc Pathol 1999, 8:191-201.
Olsen E.G., Al-Rufaie H.K. The floppy mitral valve. Study on pathogenesis. Br Heart J 1980, 44:674-683.
Kinsella M.G., Bressler S.L., Wight T.N. The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr 2004, 14:203-234.
Gupta V., Barzilla J.E., Mendez J.S., Stephens E.H., Lee E.L., Collard C.D., et al. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valves. Cardiovasc Pathol 2009, 18:191-197.
Cserjesi P., Brown D., Ligon K.L., Lyons G.E., Copeland N.G., Gilbert D.J., et al. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 1995, 121:1099-1110.
Edom-Vovard F., Schuler B., Bonnin M.A., Teillet M.A., Duprez D. Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol 2002, 247:351-366.
Schweitzer R., Chyung J.H., Murtaugh L.C., Brent A.E., Rosen V., Olson E.N., et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 2001, 128:3855-3866.
Brent A.E., Schweitzer R., Tabin C.J. A somitic compartment of tendon progenitors. Cell 2003, 113:235-248.
Brent A.E., Tabin C.J. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 2004, 131:3885-3896.
Shukunami C., Takimoto A., Oro M., Hiraki Y. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 2006, 298:234-247.
Smith T.G., Sweetman D., Patterson M., Keyse S.M., Munsterberg A. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development 2005, 132:1305-1314.
Murchison N.D., Price B.A., Conner D.A., Keene D.R., Olson E.N., Tabin C.J., et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 2007, 134:2697-2708.
Bagchi R.A., Czubryt M.P. Synergistic roles of scleraxis and Smads in the regulation of collagen 1alpha2 gene expression. Biochim Biophys Acta 1823, 2012:1936-1944.
Levay A.K., Peacock J.D., Lu Y., Koch M., Hinton R.B., Kadler K.E., et al. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res 2008, 103:948-956.
Ng C.M., Cheng A., Myers L.A., Martinez-Murillo F., Jie C., Bedja D., et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 2004, 114:1586-1592.
Azhar M., Brown K., Gard C., Chen H., Rajan S., Elliott D.A., et al. Transforming growth factor Beta2 is required for valve remodeling during heart development. Dev Dyn 2011, 240:2127-2141.
Huk D.J., Hammond H.L., Kegechika H., Lincoln J. Increased dietary intake of vitamin A promotes aortic valve calcification in vivo. Arterioscler Thromb Vasc Biol 2013, 33:285-293.
Lincoln J., Alfieri C.M., Yutzey K.E. BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol 2006, 292:292-302.
Bueno O.F., De Windt L.J., Tymitz K.M., Witt S.A., Kimball T.R., Klevitsky R., et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 2000, 19:6341-6350.
Liang Q., De Windt L.J., Witt S.A., Kimball T.R., Markham B.E., Molkentin J.D. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem 2001, 276:30245-30253.
Hulin A., Deroanne C.F., Lambert C.A., Dumont B., Castronovo V., Defraigne J.O., et al. Metallothionein-dependent up-regulation of TGF-beta2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc Res 2012, 93:480-489.
Gould R.A., Butcher J.T. Isolation of valvular endothelial cells. J Vis Exp 2010, 46.
Peacock J.D., Levay A.K., Gillaspie D.B., Tao G., Lincoln J. Reduced sox9 function promotes heart valve calcification phenotypes in vivo. Circ Res 2010, 106:712-719.
Bosse K., Hans C.P., Zhao N., Koenig S.N., Huang N., Guggilam A., et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol 2013, 60:27-35.
Farhat Y.M., Al-Maliki A.A., Chen T., Juneja S.C., Schwarz E.M., O'Keefe R.J., et al. Gene expression analysis of the pleiotropic effects of TGF-beta1 in an in vitro model of flexor tendon healing. PLoS One 2012, 7:e51411.
Mendias C.L., Gumucio J.P., Lynch E.B. Mechanical loading and TGF-beta change the expression of multiple miRNAs in tendon fibroblasts. J Appl Physiol 2012, 113:56-62.
Lorda-Diez C.I., Montero J.A., Martinez-Cue C., Garcia-Porrero J.A., Hurle J.M. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem 2009, 284:29988-29996.
Zhao B., Etter L., Hinton R.B., Benson D.W. BMP and FGF regulatory pathways in semilunar valve precursor cells. Dev Dyn 2007, 236:971-980.
Reznikoff C.A., Bertram J.S., Brankow D.W., Heidelberger C. Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res 1973, 33:3239-3249.
Krenz M., Yutzey K.E., Robbins J. Noonan syndrome mutation Q79R in Shp2 increases proliferation of valve primordia mesenchymal cells via extracellular signal-regulated kinase 1/2 signaling. Circ Res 2005, 97:813-820.
Molin D.G., Bartram U., Van der Heiden K., Van Iperen L., Speer C.P., Hierck B.P., et al. Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton. Dev Dyn 2003, 227:431-444.
Robbins J.R., Evanko S.P., Vogel K.G. Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch Biochem Biophys 1997, 342:203-211.
Kretzschmar M., Doody J., Timokhina I., Massague J. A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 1999, 13:804-816.
Hough C., Radu M., Dore J.J. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One 2012, 7:e42513.
Edom-Vovard F., Bonnin M., Duprez D. Fgf8 transcripts are located in tendons during embryonic chick limb development. Mech Dev 2001, 108:203-206.
Dietz H.C., Cutting G.R., Pyeritz R.E., Maslen C.L., Sakai L.Y., Corson G.M., et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991, 352:337-339.
Loeys B.L., Chen J., Neptune E.R., Judge D.P., Podowski M., Holm T., et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005, 37:275-281.
Matt P., Schoenhoff F., Habashi J., Holm T., Van Erp C., Loch D., et al. Circulating transforming growth factor-beta in Marfan syndrome. Circulation 2009, 120:526-532.
Holm T.M., Habashi J.P., Doyle J.J., Bedja D., Chen Y., van Erp C., et al. Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 2011, 332:358-361.
Radermecker M.A., Limet R., Lapiere C.M., Nusgens B. Increased mRNA expression of decorin in the prolapsing posterior leaflet of the mitral valve. Interact Cardiovasc Thorac Surg 2003, 2:389-394.