Argon; Sea ice; Modelling; Gas bubbles; Gas exchange
Résumé :
[en] Abstract: Focusing on physical processes, we aim at constraining the
dynamics of argon (Ar), a biogeochemically inert gas, within first year
sea ice, using observation data and a one-dimensional halo-thermodynamic
sea ice model, including parameterization of gas physics. The
incorporation and transport of dissolved Ar within sea ice and its
rejection via gas-enriched brine drainage to the ocean, are modeled
following fluid transport equations through sea ice. Gas bubbles nucleate
within sea ice when Ar is above saturation and when the total partial
pressure of all three major atmospheric gases (N2, O2 and Ar) is above
the brine hydrostatic pressure. The uplift of gas bubbles due to buoyancy
is allowed when the brine network is connected with a brine volume above
a given threshold. Ice-atmosphere Ar fluxes are formulated as a diffusive
process proportional to the differential partial pressure of Ar between
brine inclusions and the atmosphere. Two simulations corresponding to two
case studies that took place at Point Barrow (Alaska, 2009) and during an
ice-tank experiment (INTERICE IV, Hamburg, Germany, 2009) are presented.
Basal entrapment and vertical transport due to brine motion enable a
qualitatively sound representation of the vertical profile of the total
Ar (i.e. the Ar dissolved in brine inclusions and contained in gas
bubbles; TAr). Sensitivity analyses suggest that gas bubble nucleation
and rise are of most importance to describe gas dynamics within sea ice.
Ice-atmosphere Ar fluxes and the associated parameters do not drastically
change the simulated TAr. Ar dynamics are dominated by uptake, transport
by brine dynamics and bubble nucleation in winter and early spring; and
by an intense and rapid release of gas bubbles to the atmosphere in
spring. Important physical processes driving gas dynamics in sea ice are
identified, pointing to the need for further field and experimental
studies.
Arrigo K., Mock T., Lizotte M. Primary producers and sea ice. Sea Ice 2010, 282-325. Wiley-Blackwell, Oxford, UK. D.N. Thomas, G.S. Dieckmann (Eds.).
Bitz C.M., Lipscomb W.H. An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. C: Oceans 1999, 104:15669-15677.
Blanchard D.C., Woodcock A.H. Bubble formation and modification in the sea and its meteorological significance. Tellus A 1957, 9:145-158.
Bowling D.R., Massman W.J. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack. J. Geophys. Res. G: Biogeo. 2011, 116.
Broecker W.S., Peng T.H. Gas exchange rates between air and sea. Tellus 1974, 26:21-35.
Carte A.E. Air bubbles in ice. Proc. Phys. Soc. 1961, 77:757-768.
Comiso J.C., Nishio F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. C: Oceans 2008, 113.
Cota G.F. Nutrient fluxes during extended blooms of Arctic ice algae. J. Geophys. Res. 1987, 92:1951-1962.
Cota G.F., Horne E.P.W. Physical control of Arctic ice algal production. Mar. Ecol. Prog. Ser. 1989, 52:111-121.
Cottier F., Eicken H., Wadhams P. Linkages between salinity and brine channel distribution in young sea ice. J. Geophys. Res. C: Oceans 1999, 104:15859-15871.
Delille B., Jourdain B., Borges A.V., Tison J.L., Delille D. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol. Oceanogr. 2007, 52:1367-1379.
Dieckmann G.S., Nehrke G., Papadimitriou S., Göttlicher J., Steininger R., Kennedy H., Wolf-Gladrow D., Thomas D.N. Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophys. Res. Lett. 2008, 35.
Eide L., Martin S. The formation of brine drainage features in young sea ice. J. Glaciol. 1975, 14:137-154.
Fritsen C.H., Coale S.L., Neenan D.R., Gibson A.H., Garrison D.L. Biomass, production and microhabitat characteristics near the freeboard of ice floes in the Ross Sea, Antartica, during the austral summer. Ann. Glaciol. 2001, 33:280-286.
Gat J.R., Shatkay M. Gas exchange with saline waters. Limnol. Oceanogr. 1991, 36:988-997.
Gavrilo, V.P., Gaitskhoki, B.Y., 1970. The statistics of air inclusions in ice. In: BBogorodskii, V.V. (Ed.), The Physics of Ice. Israel Program for Scientific Translation, Jerusalem, pp. 125-128.
Geilfus N.X., Carnat G., Papakyriakou T., Tison J.L., Else B., Thomas H., Shadwick E., Delille B. Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea). J. Geophys. Res. C: Oceans 2012, 117.
Gleitz M., Loeff M.R.V.D., Thomas D.N., Dieckmann G.S., Millero F.J. Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar. Chem. 1995, 51:81-91.
Golden K.M., Ackley S.F., Lytle V.I. The percolation phase transition in sea ice. Science 1998, 282:2238-2241.
Goosse H. Modeling the large-scale behavior of the coupled ocean-sea ice system 1997, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
Goosse H., Fichefet T. Importance of ice-ocean interactions for the global ocean circulation: a model study. J. Geophys. Res. C: Oceans 1999, 104:23337-23355.
Grenfell T.C. A theoretical model of the optical properties of sea ice in the visible and near infrared. J. Geophys. Res. 1983, 88:9723-9735.
Hamme R.C., Emerson S.R. Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen and neon. Geophys. Res. Lett. 2002, 29:35-1-35-4.
Hamme R.C., Emerson S.R. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Res. (I Oceanogr. Res. Pap.) 2004, 51:1517-1528.
Hamme R.C., Emerson S.R. Constraining bubble dynamics and mixing with dissolved gases: implications for productivity measurements by oxygen mass balance. J. Mar. Res. 2006, 64:73-95.
Hamme R.C., Severinghaus J.P. Trace gas disequilibria during deep-water formation. Deep Sea Res. (I Oceanogr. Res. Pap.) 2007, 54:939-950.
Ito T., Hamme R.C., Emerson S. Temporal and spatial variability of noble gas tracers in the North Pacific. J. Geophys. Res. C: Oceans 2011, 116.
Jones S.F., Evans G.M., Galvin K.P. Bubble nucleation from gas cavities - a review. Ad.v Colloid Interface 1999, 80:27-50.
Kattner G., Thomas D.N., Haas C., Kennedy H., Dieckmann G.S. Surface ice and gap layers in Antarctic sea ice. Highly productive habitats. Mar. Ecol. Prog. Ser. 2004, 277:1-12.
Keeling R.F. On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J. Mar. Res. 1993, 51:237-271.
Killawee J.A., Fairchild I.J., Tison J.L., Janssens L., Lorrain R. Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems. Geochim. Cosmochim. Acta 1998, 62:3637-3655.
Kovacs, A., 1996. Sea ice. Part I: Bulk salinity versus ice floe thickness. CRREL Report, US Army Cold Regions Research & Engineering Laboratory, Hanover, NH, p. 16.
Liang J.H., McWilliams J.C., Sullivan P.P., Baschek B. Modeling bubbles and dissolved gases in the ocean. J. Geophys. Res. C: Oceans 2011, 116.
Light B., Maykut G.A., Grenfell T.C. Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res. C: Oceans 2003, 108:3051.
Lindsay R.W., Zhang J. The thinning of Arctic sea ice, 1988-2003: Have we passed a tipping point?. J. Clim. 2005, 18:4879-4894.
Loose B., McGillis W.R., Schlosser P., Perovich D., Takahashi T. Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett. 2009, 36.
Loose B., Miller L.A., Elliott S., Papakyriakou T. Sea ice biogeochemistry and material transport across the frozen interface. Oceanography 2011, 24:202-218.
Loose B., Schlosser P., Perovich D., Ringelberg D., Ho D.T., Takahashi T., Richter-Menge J., Reynolds C.M., McGillis W.R., Tison J.L. Gas diffusion through columnar laboratory sea ice. Implications for mixed-layer ventilation of CO2 in the seasonal ice zone. Tellus, Ser. B: Chem. Phys. Meteorol. 2011, 63:23-39.
Lubetkin S.D. Why is it much easier to nucleate gas bubbles than theory predicts?. Langmuir 2003, 19:2575-2587.
Matsuo S., Miyake Y. Gas composition in ice samples from Antarctica. J. Geophys. Res. G: Biogeo. 1966, 71:5235-5241.
Miller L.A., Carnat G., Else B.G.T., Sutherland N., Papakyriakou T.N. Carbonate system evolution at the Arctic Ocean surface during autumn freeze-up. J. Geophys. Res. C: Oceans 2011, 116.
Miller L.A., Papakyriakou T.N., Collins R.E., Deming J.W., Ehn J.K., MacDonald R.W., Mucci A., Owens O., Raudsepp M., Sutherland N. Carbon dynamics in sea ice. A winter flux time series. J. Geophys. Res. C: Oceans 2011, 116.
Mock T., Dieckmann G.S., Haas C., Krell A., Tison J.L., Belem A.L., Papadimitriou S., Thomas D.N. Micro-optodes in sea ice. A new approach to investigate oxygen dynamics during sea ice formation. Aquat. Microb. Ecol. 2002, 29:297-306.
Nakayama N., Watanabe S., Tsunogai S. Nitrogen, oxygen and argon dissolved in the northern North Pacific in early summer. J. Oceanogr. 2002, 58:775-785.
Nemcek N., Ianson D., Tortell P.D. A high-resolution survey of DMS, CO2, and O2/Ar distributions in productive coastal waters. Global Biogeochem. Cy. 2008, 22.
Neufeld J. Natural and Forced Convection during Solidification 2008, Yale University, Yale, p. 186.
Nomura D., Eicken H., Gradinger R., Shirasawa K. Rapid physically driven inversion of the air-sea ice CO2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt. Cont. Shelf Res. 2010, 30:1998-2004.
Nomura D., Yoshikawa-Inoue H., Toyota T., Shirasawa K. Effects of snow, snowmelting and refreezing processes on air-sea-ice CO2 flux. J. Glaciol. 2010, 56:262-270.
Notz D., Worster M.G. In situ measurements of the evolution of young sea ice. J. Geophys. Res. C: Oceans 2008, 113.
Notz D., Wettlaufer J.S., Worster M.G. Instruments and methods. A non-destructive method for measuring the salinity and solid fraction of growing sea ice in situ. J. Glaciol. 2005, 51:159-166.
Ono N., Kasai T. Surface layer salinity of young sea ice. Ann. Glaciol. 1985, 6:298-299.
Papadimitriou S., Kennedy H., Kattner G., Dieckmann G.S., Thomas D.N. Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation. Geochim. Cosmochim. Acta 2003, 68:1749-1761.
Papakyriakou T., Miller L. Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago. Ann. Glaciol. 2011, 52:215-224.
Randall D.A., Wood R.A., Bony S., Colman R., Fichefet T., Fyfe J., Kattsov V., Pitman A., Shukla J., Srinivasan J., Stouffer R.J., Sumi A., Taylor K.E. Cilmate models and their evaluation. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.).
Rysgaard S., Bendtsen J., Delille B., Dieckmann G.S., Glud R.N., Kennedy H., Mortensen J., Papadimitriou S., Thomas D.N., Tison J.L. Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans. Tellus (B Chem. Phys. Meteorol.) 2011, 63:823-830.
Sarmiento J.L., Gruber N. Ocean Biogeochemical Dynamics 2006, Princeton University Press, Princeton, Woodstock.
Schwerdtfeger P. The thermal properties of sea-ice. J. Glaciol. 1963, 4:789-807.
Semiletov I., Makshtas A., Akasofu S.I., Andreas E.L. Atmospheric CO2 balance. The role of Arctic sea ice. Geophys. Res. Lett. 2004, 31(L05121):5121-5124.
Serreze M.C., Holland M.M., Stroeve J. Perspectives on the Arctic's shrinking sea-ice cover. Science 2007, 315:1533-1536.
Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf. J. Mar. Syst. 2007, 66:227-243.
Shakhova N.E., Sergienko V.I., Semiletov I.P. The contribution of the East Siberian shelf to the modern methane cycle. Herald Russ. Acad. Sci. 2009, 79:237-246.
Simmons A., Uppala S., Dee D., Kobayashi S. ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett. 2007, 110:25-35.
Stammerjohn S.E., Martinson D.G., Smith R.C., Iannuzzi R.A. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. (II Top. Stud. Oceanogr.) 2008, 55:2041-2058.
Stanley R.H.R., Jenkins W.J., Doney S.C. Quantifying seasonal air-sea gas exchange processes using noble gas time-series: a design experiment. J. Mar. Res. 2006, 64:267-295.
Takagi K., Nomura M., Ashiya D., Takahashi H., Sasa K., Fujinuma Y., Shibata H., Akibayashi Y., Koike T. Dynamic carbon dioxide exchange through snowpack by wind-driven mass transfer in a conifer-broadleaf mixed forest in northernmost Japan. Global Biogeochem. Cy. 2005, 19:1-10.
Thomas D.N., Papadimitriou S., Michel C. Biogeochemistry of sea ice. Sea Ice 2010, 425-469. Wiley-Blackwell, London. D.N. Thomas, G.S. Dieckmann (Eds.).
Tison J.L., Haas C., Gowing M.M., Sleewaegen S., Bernard A. Tank study of physico-chemical controls on gas content and composition during growth of young sea ice. J. Glaciol. 2002, 48:177-190.
Tison J.L., Brabant F., Dumont I., Stefels J. High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica. J. Geophys. Res. G: Biogeo 2010, 115.
Tsurikov V.L. The formation and composition of the gas content of sea ice. J. Glaciol. 1979, 22:67-81.
Underwood G.J.C., Fietz S., Papadimitriou S., Thomas D.N., Dieckmann G.S. Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Mar. Ecol. Prog. Ser. 2010, 404:1-19.
Vancoppenolle M., Bitz C.M., Fichefet T. Summer landfast sea ice desalination at Point Barrow, Alaska: modeling and observations. J. Geophys. Res. C: Oceans 2007, 112.
Vancoppenolle M., Fichefet T., Goosse H., Bouillon S., Madec G., Maqueda M.A.M. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1: Model description and validation. Ocean Modell. 2009, 27:33-53.
Vancoppenolle M., Goosse H., De Montety A., Fichefet T., Tremblay B., Tison J.L. Modeling brine and nutrient dynamics in Antarctic sea ice. The case of dissolved silica. J. Geophys. Res. C: Oceans 2010, 115.
Wakatsuchi, M., 1983. Brine exclusion process from growing sea ice. Contributions from the Institute of Low Temperature Science, Hokkaido University, Series A, pp. 29-65.
Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. C: Oceans 1992, 97:7373-7382.
Weeks W.F. On Sea Ice 2010, University of Alsaka, Fairbanks, Alaska.
Woolf D.K., Thorpe S.A. Bubbles and the air-sea exchange of gases in near-saturation conditions. J. Mar. Res. 1991, 49:435-466.
Yager P.L., Wallace D.W.R., Johnson K.M., Smith W.O., Minnett P.J., Deming J.W. The Northeast Water Polynya as an atmospheric CO2 sink: a seasonal rectification hypothesis. J. Geophys. Res. C: Oceans 1995, 100:4389-4398.
Zemmelink H.J., Delille B., Tison J.L., Hintsa E.J., Houghton L., Dacey J.W.H. CO2 deposition over the multi-year ice of the western Weddell Sea. Geophys. Res. Lett. 2006, 33.
Zemmelink H.J., Dacey J.W.H., Houghton L., Hintsa E.J., Liss P.S. Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea. Geophys. Res. Lett. 2008, 35.
Zhou, J., Delille, B., Brabant, F., Geilfus, N.-X., Tison, J.-L., in preparation. Using O2/Ar to assess net primary production and its contribution to CO2 budget in sea ice.
Zhou J., Delille B., Eicken H., Vancoppenolle M., Brabant F., Carnat G., Geilfus N.-X., Papakyriakou T., Heinesch B., Tison J.-L. Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): insights on brine and gas dynamics across seasons. J. Geophys. Res. C: Oceans 2013, 118:3172-3189.