Modelling argon dynamics in first-year sea ice

Sébastien Moreau1*, Martin Vancoppenolle2,1, Jiayun Zhou3, Jean-Louis Tison3, Bruno Delille4, Hugues Goosse1

1 Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium.

2 Laboratoire d’Océanographie et du Climat, CNRS, Paris, France.

3 Laboratoire de Glaciologie, Faculté des Sciences, Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium.

4 Unité d’océanographie chimique, MARE, Université de Liège, Belgium.

* Corresponding author email: s.moreau@uclouvain.be
Abstract

Focusing on physical processes, we aim at constraining the dynamics of argon (Ar), a biogeochemically inert gas, within first year sea ice, using observation data and a one-dimensional halo-thermodynamic sea ice model, including parameterization of gas physics. The incorporation and transport of dissolved Ar within sea ice and its rejection via gas-enriched brine drainage to the ocean, are modeled following fluid transport equations through sea ice.

Gas bubbles nucleate within sea ice when Ar is above saturation and when the total partial pressure of all three major atmospheric gases (N₂, O₂ and Ar) is above the brine hydrostatic pressure. The uplift of gas bubbles due to buoyancy is allowed when the brine network is connected with a brine volume above a given threshold. Ice-atmosphere Ar fluxes are formulated as a diffusive process proportional to the differential partial pressure of Ar between brine inclusions and the atmosphere. Two simulations corresponding to two case studies that took place at Point Barrow (Alaska, 2009) and during an ice-tank experiment (INTERICE IV, Hamburg, Germany, 2009) are presented. Basal entrapment and vertical transport due to brine motion enable a qualitatively sound representation of the vertical profile of the total Ar (i.e. the Ar dissolved in brine inclusions and contained in gas bubbles; \(T_{Ar} \)). Sensitivity analyses suggest that gas bubble nucleation and rise are of most importance to describe gas dynamics within sea ice. Ice-atmosphere Ar fluxes and the associated parameters do not drastically change the simulated \(T_{Ar} \). Ar dynamics are dominated by uptake, transport by brine dynamics and bubble nucleation in winter and early spring; and by an intense and rapid release of gas bubbles to the atmosphere in spring. Important physical processes driving gas dynamics in sea ice are identified, pointing to the need for further field and experimental studies.

Keywords: Argon, Sea ice, Modelling, Gas bubbles, Gas exchange
1. Introduction

Sea ice is an important component of the Earth System. First, sea ice is a sensitive indicator of climate change, as witnessed by its rapid retreat in the Arctic (Comiso and Nishio, 2008; Lindsay and Zhang, 2005; Serreze et al., 2007) and from the waters west of the Antarctic Peninsula (Stammerjohn et al., 2008). Sea ice also influences climate due to its high albedo, its insulating effect that reduces the underlying water heat loss in winter and its influence on the water column stratification in Polar Regions, driving the global thermohaline circulation (Goosse and Fichefet, 1999; Randall et al., 2007). Sea ice may also play an important, but still mainly unresolved, role in the sequestration of greenhouse gases by the ocean. Rysgaard et al. (2011) estimated that the seasonal CO₂ uptake in the sea ice zone may equal half of the annual CO₂ uptake of ice-free polar seas. The role of sea ice on CO₂ dynamics in the Polar Oceans has so far not been properly represented in global Earth System models, because in those models sea ice is considered as an impervious shield preventing ocean-atmosphere gas exchanges (Yager et al., 1995). Recently, however, active gas sources and sinks in sea ice, as well as dynamic gas transport through the sea ice brine network have been evidenced (e.g. Delille et al., 2007; Geilfus et al., 2012; Mock et al., 2002; Papadimitriou et al., 2003; Semiletov et al., 2004; Tison et al., 2010). Biogeochemical processes, including the photosynthesis and respiration of microbial assemblages thriving in sea ice actively contribute to gas dynamics (Arrigo et al., 2010; Deming, 2010; Gleitz et al., 1995), but their proper quantification has still to come.

As the observation of gas exchanges through sea ice is a real challenge, modelling can help to provide theoretical constraints on the syngenetic, epigenetic and exogenetic processes that govern gas dynamics within sea ice (Tsurikov, 1979). The processes associated with ice formation, whatever the mode of formation (wind and wave turbulence frazil ice, congelation
growth of columnar ice, snow ice, superimposed ice) are referred to as *syngenetic* (Matsuo and Miyake, 1966). *Epigenetic* processes encompass all the phenomena that affect gas content and composition from within the sea ice. This includes the nucleation and dissolution of gas bubbles within sea ice associated with temperature changes (Tison et al., 2002); the vertical redistribution of dissolved gas associated with brine dynamics (Loose et al., 2011a; Tison et al., 2010) and the vertical uplift of buoyant gas bubbles (Zhou et al., submitted); the formation of gaseous inclusions due to biogeochemical sources and sinks, such as photosynthesis (Delille et al., 2007; Mock et al., 2002). The *exogenetic* processes refer to the exchanges of gas between sea ice, the atmosphere and the ocean (Nomura et al., 2010a; Papakyriakou and Miller, 2011).

For the present study, we only consider the following processes: gas entrapment and gas release from solution during freezing (syngenetic), gas bubble nucleation and rise (epigenetic), and gas exchanges between sea ice, the atmosphere and the ocean (exogenetic).

Argon (Ar) is a noble gas unaffected by biological activities such as primary production, remineralization or grazing that take place within sea ice. Hence, it is often used to understand oceanic physical processes such as deep water formation (Hamme and Severinghaus, 2007), air-sea gas exchanges (Stanley et al., 2006) or processes controlling oceanic gas saturation states (Ito et al., 2011). Ar may also be used, along with oxygen which has a similar solubility (Broecker and Peng, 1974), as a potential indicator of the net community production within environments such as seawater (Nemcek et al., 2008) and sea ice (Zhou et al., in preparation).

Using the O$_2$/Ar ratio to estimate the net community production is an advantageous non-invasive technique compared to other methods (Arrigo et al., 2010). Hence, modelling Ar is a first step towards a better understanding of the physical controls on gas dynamics within sea ice, an estimation of primary production in sea ice, and a better understanding of gas exchanges (e.g., CO$_2$) in ice-covered oceans.
In the present study, we attempt to identify the importance of the physical processes potentially driving gas dynamics within sea ice: gas entrapment, gas release from solution during freezing, gas bubble nucleation and rise, and gas exchanges between sea ice, the atmosphere and the ocean. To do so, a representation of the impact of those processes on Ar concentrations within first-year sea ice is implemented in a one-dimensional halo-thermodynamic sea ice model. Our analyses are based on two model simulations, run to mimic the conditions from two observation sites: Point Barrow (natural sea ice, Alaska) and INTERICE (artificial ice grown in an ice tank, HSVA, Hamburg, Germany).

2. The model

2.1. Model physics

The model presented is one-dimensional and only vertical processes are considered. We consider a horizontally uniform sea ice layer of thickness h_i and covered by a uniform layer of snow of depth h_s. The model consists of 4 components: ice halo-thermodynamics, radiative transfer, brine transport and abiotic gas dynamics. At each depth z within the ice, the brine salinity $\sigma(z)$ and brine volume fraction $e(z)$ (or brine volume) are determined from the bulk ice temperature $T(z)$ and salinity $S(z)$ (Schwerdtfeger, 1963).

In the model, sea ice forms at the ice base by congelation and melts at the surface and base of sea ice depending on interfacial heat budgets, involving atmospheric, oceanic and inner ice conductive heat fluxes (Vancoppenolle et al., 2007; 2010). Salinity and temperature control the thermal properties of sea ice (thermal conductivity, specific heat and energy of melting; see Bitz and Lipscomb, 1999). In the model, ice may also form as snow ice when snow is deep
enough to depress the ice surface below sea level. Seawater infiltrates between sea ice and the
snow cover and instantaneously freezes in the snow, forming snow ice (Vancoppenolle et al.,
2009). As in Vancoppenolle et al (2010), the model halodynamics are based on advection-
diffusion equations. Gravity drainage is represented using a mixing term and an effective
diffusivity that involves the brine volume fraction $e(z)$ and a porous-medium Rayleigh number,
Ra, (Notz and Worster, 2008). When ice melts, fresh water percolates through the brine
network (i.e. flushing) given that $e \geq 5\%$ within the entire ice column. This process is
represented as an advective flow.

2.2. Gas concentrations and dynamics

Most of the syngenetic, epigenetic and exogenetic processes that we believed to be important
were introduced in the model. Considering that Ar may either be dissolved in brine inclusions
or present in gas bubbles, the total concentration of Ar within each control volume of sea ice,
C^{TA}, is formulated as the sum of dissolved gas and gas bubbles:

$$C^{TA} = C^{dAr} + C^{bAr} = e \zeta^{dAr} + C^{bAr}$$

where C^{dAr} is the bulk dissolved fraction of Ar, e is the brine volume fraction, ζ^{dAr} is the
concentration of dissolved Ar in brine (with $e \zeta^{dAr}$ in mmol m$^{-3}$ of ice), and C^{bAr} is the
contribution of gas bubbles to bulk concentration (in mmol m$^{-3}$ of ice).

The total gas concentration in sea ice is in general controlled by physical and biogeochemical
sources and sinks. For Ar, biological sources are nil, and therefore, we assume that the brine
and bubble concentrations evolve in the following way:
The first two terms on the right-hand side of eq. 2 express that the Ar dissolved in brine inclusions is transported similarly to salt. The first of these two terms represents the mixing of Ar by molecular diffusion and convection, while the second of these two terms represents the effect of flushing as in Vancoppenolle et al. (2010). D is an effective diffusivity, equal to the molecular (turbulent) diffusivity if Ra is sub (super-) critical. Q is the Darcy velocity associated with brine flushing (Vancoppenolle et al., 2010). More precisely, we consider a flux of melt water Q (of salinity 0) which enters the brine network through the uppermost layer of sea ice.

With this formulation, depending on the direction of the sea ice-ocean Ar concentration gradient, Ar is either incorporated into or released from sea ice due to gravity drainage and expelled from sea ice due to percolation.

The third term on the right-hand side of eq.2, S^{bub}, specifies how bubble nucleation/dissolution extracts/releases dAr from/to the liquid phase. Brine volume fraction is present to ensure conservation of total Ar concentration. Gas bubbles are assumed not to follow brine dynamics; hence there are no brine transport terms in eq. 3. The same S^{bub} term releases/extracts Ar into/from bubbles. A specific transport term T^{bub} accounts for buoyant gas bubble rise (see 2.4).

Finally, Ar is incorporated within sea ice through basal congelation. As in Vancoppenolle et al (2010), the concentration of Ar in newly formed basal ice is assumed to be equal to the Ar concentration in seawater, C_{w}^{Ar} (see section 2.5.1 for a description of C_{w}^{Ar}).
2.3. **Gas bubble nucleation and dissolution**

As recent observations suggest that brine concentrations of Ar are much larger than saturation (Zhou et al., submitted), we argue that the major sources and sinks of gaseous Ar in sea ice must be associated with the nucleation and dissolution of gas bubbles due to super- and under-saturation of dissolved Ar in brine inclusions.

Within the ocean, gas bubble nucleation is mainly generated by the action of breaking waves (Keeling, 1993). This process has been the focus of intensive research, modelling in particular, over the last decades. Bubble mediated gas exchanges between the ocean and the atmosphere are represented by separating two end-members: small bubbles that completely dissolve within the ocean and large bubbles that will rise back to the ocean surface, exchanging gas with the ocean during their ascent, as a function of the gas solubility and molecular diffusivity (Hamme and Emerson, 2002, 2006; Liang et al., 2011). However, the physical conditions that trigger the nucleation of gas bubbles within sea ice are not related to the action of breaking waves and another modelling approach is needed.

Very little is known about the nucleation of gas bubbles within sea ice, although their existence within sea ice has been reported (e.g. Light et al., 2003). Previous studies of gas contents within sea ice suggested that gases are found above their solubility value within sea ice (Killawee et al., 1998; Thomas et al., 2010; Tison et al., 2002). In addition, Carte (1961) and Lubetkin (2003) suggested that gas bubbles form when gas content within sea ice is above saturation. However, this process has not been represented in sea ice models so far. A recent study of sea ice microstructure performed under high resolution imagery showed that gas bubbles were only
present in the vicinity of brine inclusions (Light et al., 2003). Therefore, we only consider gas bubbles to nucleate within brine inclusions. In addition, to explicitly represent to gas bubbles would imply to model other gases present in sea ice (e.g. N$_2$, CO$_2$, CH$_4$ and DMS) which was not the goal of the present study. Therefore, since a realistic formulation of bubble nucleation within brine inclusions seems out of reach given the number of poorly understood processes – for instance the size distribution of gas inclusions, as well as the dependence of the Ar solubility on pressure and temperature in the brine inclusions – we designed the simplest parameterization of the nucleation/dissolution of Ar-rich gas bubbles, using a linear dependence on the level of super-/under-saturation.

The model parameterization of gas bubble nucleation and dissolution used here is the following. During ice growth, brine inclusions contract due to decreasing temperatures, and the brine concentration of gases initially dissolved in seawater increases. For some gases, including Ar, the brine concentration in dissolved gas reaches saturation and promotes the nucleation of bubbles (Killawee et al., 1998; Light et al., 2003; Tison et al., 2002) given that the total partial pressure of all three major atmospheric gases (N$_2$, O$_2$ and Ar) is above the brine hydrostatic pressure calculated as in Eide and Martin (1975). Conversely, if dissolved Ar concentration within brine inclusions becomes undersaturated, gaseous Ar from the bubbles dissolves back to the brine inclusions. Hence, the source term for bubble nucleation/dissolution reads:

\[S^{bub} = R^{bub} \left(\alpha_{sat} - \alpha_{sat} \right) \]

where R^{bub} is a prescribed rate of bubble nucleation/dissolution, given as a percentage of the supersaturation that will be converted to the gas phase each hour; and $\alpha_{sat} \geq 1$ is the ratio of supersaturation that is tolerated in brines. Those two parameters are used to control the bubble
Ar concentration, as instantaneous transfer of all supersaturation leads to rapid accumulation of Ar in gas bubbles (see Results and Discussion for details).

The concentration of Ar at saturation is calculated from the equations of Hamme and Emerson (2004) for Ar:

\[\ln (T_{s}^{\text{sat}}) = a_0 + a_1 \times T_s + a_2 \times T_s^2 + a_3 \times T_s^3 + \sigma \times (b_0 + b_1 \times T_s^2 + b_2 \times T_s^3) \]

where \(T_s = \ln[(298.15-T)/(273.15+T)] \) and \(T \) is the brine inclusions temperature (°C), \(\sigma \) is the sea ice brines salinity and with \(a_0 = 2.79150, a_1 = 3.17609, a_2 = 4.13116, a_3 = 4.90379, b_0 = -0.00696233, b_1 = -0.00766670 \) and \(b_2 = -0.0116888 \). While this fit has been developed for temperatures higher than 0 °C, we use it below this threshold, which is an approximation. In practise, as we assume thermal equilibrium in brine inclusions, brine salinity depends on temperature, and hence the solubility of Ar is only a function of temperature within sea ice.

2.4. Gas bubble rising velocity

Because of their buoyancy, gas bubbles are expected to rise within the brine network, once the latter is connected (Eide and Martin, 1975), which occurs above a certain brine volume fraction threshold. Observations suggest that gas bubble size ranges from 0.004 to 0.07 mm in radius at –15 °C and that most bubbles are smaller than 0.2 mm during the whole sea ice season (i.e. with brine inclusions temperatures ranging from -30 to -2 °C; Gavrilko and Gaitskhoki, 1970; Grenfell, 1983; Light et al., 2003). For simplification, we only consider gas bubbles with a radius of 0.1 mm to be present within sea ice brines (Light et al., 2003). Assuming a constant bubble size and no impact of sea ice microstructure (i.e. tortuosity), it is possible to constrain the maximum gas bubble rising velocity (\(w \)) from Woolf and Thorpe (1991) as a function of their own buoyant rise speed:
With $y = 10.82/\chi$, $\chi = g r^3/\nu^2$, g the gravity (m s$^{-2}$), r the bubble radius (m) and ν the kinematic viscosity of brines (m2 s$^{-1}$). Because “dirty” gas bubbles rise slower in the water column than “clean bubbles” (Woolf and Thorpe, 1991), the formula for “dirty” gas bubbles is used here to calculate the minimum rising velocity of gas bubbles within sea ice brines. For a bubble of radius 0.1 mm and a kinematic viscosity (ν) of 2.7×10^{-6} m2 s$^{-1}$ for seawater at -10 °C and a salinity of 70 g kg$^{-1}$ and calculated from sea ice brine density (ρ) and brine dynamic viscosity (μ) as $\nu = \mu / \rho$, the rising velocity of a gas bubble within sea ice would be: 0.008 m s$^{-1}$ or 27.9 m h$^{-1}$. As a comparison, within the ocean, Blanchard and Woodcock (1957) and Woolf and Thorpe (1991) reported bubble rising velocities of 0.015 m s$^{-1}$ for bubbles with a radius of 0.1 mm. The upward bubble velocity calculated here for sea ice brines, with the formulation of Woolf and Thorpe (1991) designed for open water, is, therefore, slightly lower and seems to be a reasonable assumption. In addition, we studied the potential effect of gas-liquid drag on gas bubbles dynamics and particularly for small bubbles with low buoyancy and found that the minimum speed required for brine drainage to cancel gas bubbles buoyancy was smaller than salt, and hence brine, fluxes measured at the ice/water interface by Wakatsuchi (1983).

The formulation of Woolf and Thorpe (1991) used here is developed to describe bubble rise in open water and has been given here as a zero order approximation since no formulation is available yet for bubble rise in sea ice brines. Consequently, we do not consider here the possible interaction between gas bubbles and brine pockets sidewalls, i.e. viscous drag. In addition, we also neglect the effect of sea ice tortuosity on gas bubble rise. Because of sea ice tortuosity, some gas bubbles could be stored within an interconnected brine network and anfractuosities; which would somewhat slow down gas bubbles on their way to the atmosphere.
The values given by the formulation of Woolf and Thorpe (1991) are thus likely higher than the ones experienced by bubbles in sea ice. Observations by Zhou et al. (submitted) suggest that ice is permeable to gas release near a 10% brine volume fraction threshold. This observation probably reflects the impact of sea ice tortuosity and/or viscous drag on gas bubble rise. Therefore, for simplicity, and in the absence of a complete understanding in the literature of the interactions between different bubbles or with brine pockets sidewalls, gas bubble rise only depends on brine volume here.

Considering the time step of the model (i.e. 3600 s, see below), the potential gas bubble rise speed calculated previously and the fact that we study landfast first year sea ice with a maximum depth < 2 m, it is appropriate to think that gas bubble would readily escape sea ice when brine inclusions are connected with a brine volume above a given threshold. In practice, T_{bub}– representing the impact of gas bubble rise on gaseous Ar – is computed in the following way. When the brine volume fraction is above a prescribed threshold (e.g. $e_{f}^{gas} = 10\%$), all gas bubbles are assumed to instantaneously rise up to the atmosphere, or stop on the way when they encounter a layer with $e < e_{f}^{gas}$. Therefore, gas bubbles can be stored within the ice until they have a direct connection with the atmosphere.

2.5. Gas exchange between sea ice, the ocean and the atmosphere

2.5.1. Gas exchange between sea ice and the ocean

At the base of sea ice, we assume the continuity of dissolved gas concentration between seawater and brine and impose a Dirichlet condition: $\zeta^{dAr} = C_{w}^{Ar}$, where C_{w}^{Ar} is the concentration of Ar in seawater. As Hamme and Emerson (2002) state that Ar concentrations
within the ocean are found to be close to saturation (± 2%), we consider surface water Ar concentrations to be constant. The concentration of Ar in surface water is taken as:

\[C_{w}^{Ar} = f_{air}^{Ar} \Sigma^{Ar} \]

where \(\Sigma^{Ar} \) is the solubility of Ar (mol Pa\(^{-1}\) m\(^{-3}\)) and is a function of temperature and salinity and \(f_{air}^{Ar} \) is the fugacity of Ar in the atmosphere. We assume that Ar is an ideal gas, with low molecular weight; hence, fugacity reduces to pressure. Ar contribution to atmospheric composition is 0.934% expressed as the ratio of moles of Ar to the total number of moles of gas in dry air (see Sarmiento and Gruber, 2006, Table 3.1.1 p. 74). Hence, as partial pressures and molar concentrations are proportional: \(f_{air}^{Ar} = p_{atm} \times 0.00934 \), with \(p_{atm} \) the atmospheric pressure. Because, the concentration of Ar in surface water is close to equilibrium with the atmosphere, at a pressure of 1 atmosphere, there is 0.018 mol m\(^{-3}\) of Ar dissolved in surface sea waters which seems a reasonable assumption compared to Kakayama et al. (2002) who observed Ar concentration between 0.017 and 0.018 mol m\(^{-3}\) in the north Pacific with water temperatures ranging from -1 to 1 °C.

2.5.2. **Gas exchange between sea ice and the atmosphere**

At the surface of sea ice, we impose a flux boundary condition where:

\[F^{Ar} = k^{Ar} \times a_{eff} \times (\Sigma^{Ar} f_{air}^{Ar} - \zeta^{dAr}) \]

This equation expresses that the brine concentration of dissolved Ar will tend to reach equilibrium with the atmosphere at a rate which depend on \(k^{Ar} \), the piston velocity (m s\(^{-1}\)). \(a_{eff} \) expresses the fraction of the sea ice surface occupied by brines. By default, \(a_{eff} = R_{b} \times e \), where \(R_{b} \) is the brine aspect ratio. \(R_{b} \) is equal to 1 for isotropic brines and < 1 if brines are vertical ellipsoids. Here, we will assume isotropic brine inclusions near the ice surface and assume \(a_{eff} \)
Equation 8 describes the flux of dissolved Ar between sea ice brines and the atmosphere and does not include gas bubble flux (as described in section 2.4).

We consider a “stagnant film” molecular diffusion of Ar between the brine openings on the top layer of sea-ice and the atmosphere as in Gat and Shatkay (1991). The piston velocity is directly proportional to \(D \), the molecular diffusion coefficient of gas in the liquid phase and \(z_{BL} \), the thickness of the diffusive boundary layer:

\[
 k^{\text{Ar}} = \frac{D}{z_{BL}} \quad \text{eq.} \, 9
\]

Zemmelink et al. (2008; 2006) noticed gradients in CO\(_2\) and dimethylsulfide (DMS) in the snow cover above sea ice in the Weddell Sea, arguing for the role of the snow cover in gas exchanges between sea ice and the atmosphere. However, for simplification, this present parameterization assumes that snow has no impact on gas exchanges between sea-ice and the atmosphere.

2.6. Numerics

The salt and gas transport equations are solved within the framework of a 10 layer thermodynamic sea ice model (see Figure 1 of Vancoppenolle et al., 2010 for a sketch of the model grid) and using a finite difference, implicit numerical scheme to ensure salt and gas mass conservation to computer precision. The thickness of sea ice layers changes in time with ice growth and melt. At each time step, the changes in ice temperature, salinity and thickness are computed, giving \(S^{n+1} \) and \(T^{n+1} \); followed by the computation of the Argon concentration change. The time stepping of this procedure is the following. New brine volume \(e^{n+1} \) for each layer is diagnosed from \(S^{n+1} \) and \(T^{n+1} \). The role of changing brine volume on Ar concentrations is accounted for by initializing \(\zeta^{n+1}d\text{Ar} \) as:
Then, Argon transport (eq. 2) is solved for ζ, giving ζ^*, keeping e fixed, and the bulk dissolved concentration of Argon is recomputed using:

$$C_n^{dAr} = \frac{\zeta_n^{dAr}}{e_{n+1}}$$

eq. 10

Sources of new ice argon are then computed. This method ensures the conservation of tracer contents summed over the sea ice-snow column within computer precision. The total argon content is given in kg m$^{-2}$ by:

$$M^c = \sum_{k=1}^{n} C_k \Delta z_k$$

eq. 11

The computation of T_k, S_k and C_k for all layers k ($k = 1, \ldots, N$) within the computer code follows the under mentioned procedure: (1) radiative transfer; (2) diffusion of heat; (3) salt transport; (4) gas transport; (5) gas sources and sinks; (6) ice growth and melt; (7) vertical remapping for salt, enthalpy and gas concentration.

3. Experimental Setup

3.1. Observations used for model validation

For validation of the model results, we used measurements from two studies: one from a field survey on landfast sea ice at Barrow (Alaska) and one from an experimental study, INTERICE IV, run at the Hamburgische Schiffbau-Versuchsanstalt (HSVA, Hamburg, Germany), where sea ice was grown in an experimental basin under controlled conditions.

The field survey at Barrow (near the Barrow sea ice observatory - Geophysical Institute of the University of Alaska, Fairbanks) lasted from January to June 2009, hence, during the whole sea
ice growth and decay season (see Zhou et al., submitted for a complete description). Each
month, ice cores were extracted on 1 to 3 occasions for a total of 10 stations. Physical and
biogeochemical properties of the extracted ice cores were measured. Sea ice thickness was
between 70 and 140 cm and snow depth was between 0 and 40 cm. Columnar ice was
dominant, given the spatial homogeneity of the sampling site. We ordered stations that are
representative of three main phases in sea ice dynamics: (1) winter stations (e.g. February 2)
characterized by strong temperature gradients, typical C-shape salinity profiles and brine
volume fraction < 5% (hence low permeability; Golden et al., 1998) except at the bottom; (2)
early and mid-spring stations (e.g. March 31 and April 10) when sea ice is thicker but the brine
volume fraction is still mainly < 5% and (3) late spring stations (e.g. May 8 and June 5) when
the air temperature increase deeply affected the temperature and salinity profiles (see Figure 5
of Zhou et al., submitted for salinity, temperature and brine volume vertical profiles at Barrow,
Alaska). The brine volume fraction was higher for late spring stations (up to 25%) suggesting a
higher permeability. According to Zhou et al. (submitted), full-depth convection occurred in sea
ice brines between mid-spring and late spring stations (between April 10 and May 8), strongly
influencing sea ice biogeochemical properties.

The INTERICE IV experimental study at Hamburg took place in an indoor tank (the Arctic
Environmental Test Basin of the Hamburg Ship Model Basin, HSVA-Hamburg, Germany) in
September-October 2009. The tank is 30 m long, 6 m wide and 1 m deep. 24 polyethylene
containers were placed in the tank; each of them accommodating 1 m³ of North Sea seawater.
The air temperature was kept at -15 °C during the initial ice growth period (September 4 to 17).
After the sampling on September 17, when ice thickness had reached about 20 cm, the air
temperature was increased and kept at -1 °C for the rest of the experiment. Sea ice blocks were
sampled at regular intervals, using a specific extraction method to prevent brine drainage
(Cottier et al., 1999). As for ice cores from Barrow, the temperature, salinity and other biogeochemical properties were measured, including Ar concentration in the ice (Crabeck et al., in preparation). Three distinct stages were observed: (1) the initial growth (e.g. September 9) when sea ice brine volume fraction was always > 10%, (2) the growing stage (e.g. September 14 and 17) when the brine volume fraction decreased to values close to 5% (except in the bottom of the ice), and finally (3) the decay (warming) phase (e.g. September 21) when the whole ice core brine volume fraction increased to about 10%. The INTERICE IV experiment therefore provides the characteristics of the early growing ice stage (which should be representative of the autumnal sea ice or new lead growth), not captured during the field survey at Barrow.

3.2. Forcing and initialization

The model is run with a 1 h time step at both sites. At Point Barrow, the simulation is performed from January 16 to June 30, 2009. Simulation starts on January 16 because this corresponds to the first ice thickness and snow depth measurements. Atmospheric forcings are a combination of various atmospheric reanalysis and climatologies (Goosse, 1997; Vancoppenolle et al., 2010) using atmospheric fields from the geographical coordinates of the Point Barrow sea ice observation station in 2009 (71.3°N, 156.8°W). Snowfall is retrieved from ECMWF ERA-Interim reanalyses and forecasts (Simmons et al., 2007). Oceanic flux is prescribed (3.3 W m$^{-2}$) in order to match sea ice thickness and snow depth observations. Initial conditions of the model at Point Barrow are $h_i = 0.70$ m, $h_s = 0.06$ m (based on observations) and $S = 5.92$‰ at each depth, based on the bulk salinity versus thickness observation-based regression of Kovacs (1996). The initial surface temperature is set to $T_{su} = 265$ K.
At INTERICE, the simulation is run from September 9 to September 22, 2009. INTERICE forcing is peculiar, since the tank is enclosed in a controlled temperature building. The shortwave radiation is assumed to be nil, as well as the turbulent fluxes, as in a closed building, there is neither sun nor wind. The surface energy balance is therefore reducing to the equilibrium between incoming and outgoing longwave radiation. No snowfall is considered at INTERICE. Oceanic flux is assumed to be nil in order to match sea ice thickness and snow depth observations. Because forcing conditions are only available a few hours before the first ice core was sampled, we use observations to initiate sea ice salinity. At INTERICE, initial conditions are: $h_i = 0.088$ m and $S = 9.46$ ‰ at each depth. The initial surface temperature is set to $T^{	ext{sur}} = 265$ K. An initial linear temperature profile within snow and ice is assumed, with the basal interface being at the seawater freezing point.

Initial values for Ar concentration are specified as follows. Sea water Ar concentration was assumed constant in time at 0.018 mol m$^{-3}$ for both Barrow and INTERICE, assuming air-sea equilibrium with a reference atmosphere, as described earlier. At Barrow, initial bulk sea ice Ar concentration was considered to follow the ice-ocean salt ratio, i.e. 1/5, to account for brine drainage that occurred during ice formation and neglecting bubble formation before the start of the simulation. At INTERICE, initial bulk sea ice Ar concentration was set to its observed value, i.e. 2.8 mmol m$^{-3}$. The gas dynamics parameters used for the best (CTRL) run were determined to match as accurately as possible the observed Ar dynamics at the two sites. This was done by adjusting empirically the key parameters for gas dynamics: R^bub, α_{sat}, e_T^gas and z_{BL} (see Table 1 for the model parameters of the CTRL run).

3.3. Sensitivity experiments
In order to illustrate how the processes represented in the model shape the simulated gas
dynamics within sea ice, several sensitivity experiments were performed at the Barrow site (see
Table 1 for a description of the model parameters used in all the sensitivity runs). In a first
series of sensitivity runs, the sensitivity of simulated Ar concentration to the vertical resolution
of the model (runs 01-02) and to initial Ar concentration (runs 03-04) was tested. In a second
series of sensitivity runs, the sensitivity of simulated Ar concentration to the key parameters
was investigated: the gas bubble nucleation rate R_bbub (runs 05-07); the gas bubble permeability
threshold e_T^{gas} (runs 08-09) and the thickness of the boundary layer z_{BL} used in the
parameterization of gas fluxes between sea ice and the atmosphere (runs 10-11). In a third
series of sensitivity runs, the model was degraded (i.e. the three major modelled processes: gas
bubble nucleation, gas bubble rise and ice-atmosphere gas fluxes were consecutively
deactivated) to see the influence of each parameterization (runs 05 and runs 12-13).

4. Results

4.1. Ice growth simulations at Barrow (Alaska)and INTERICE: comparison
with observations

At Barrow, modelled sea-ice grows regularly from January to June before maximal ice
thickness (i.e. 1.36 m) is attained on May 28 (Figure 1a), which is close to the maximal ice
thickness (i.e. ~ 150 cm) observed off Barrow by Nomura et al. (2010a). Simulated snow
thickness, which is a result of the balance between snowfall and snow melt, increases from
mid-January to May (with a maximum snow height of 0.36 m on April 25). Snow melt starts in
May and the snow cover has fully disappeared by June 3. Both the simulated ice thickness and
snow depth compare well with observations (black crosses in Figure 1a).
Simulated bulk ice salinity in the upper most layer of the ice remains high from January to mid-May (with salinity ~6) before it reaches a minimum in June (~0.5, Figure 1a). Simulated bulk ice salinity follows the same trend in the lower part of sea ice, with respective salinities of ~9.5 and ~4 from January to June. Simulated temperature in the upper most layer of sea ice evolves from relatively low temperatures in January, February and March (~ -14 °C) to a relative high in June (~ -0 °C). The lowermost layer of sea ice is warmer and evolves from ~ -2.4 °C in January to ~ -1.6 °C in June. During winter and early spring (from January to April 28), the upper two thirds of sea ice are not permeable (with a simulated brine volume e < 5%), while the lower third of the sea ice column is permeable to fluid transport (i.e. with e > 5%). The simulated brine volume compares well with observations during winter and early spring (Figure 2). The permeability of sea ice increased after April 28 (with e > 5% in the whole ice column), but in the uppermost ice layer (where e < 10%), where flushing freshened the ice near the surface, which hindered the connectivity of sea-ice with the overlying atmosphere (Figure 1). The simulated brine volume compares also well with observations during late spring (Figure 2) but close to the surface of sea ice where the observed brine volume was > 20% while the simulated brine volume was < 10%. Although Zhou et al. (submitted) reported high brine volumes below the top layers of sea ice, they also reported the formation of superimposed ice due to snow melting at the ice surface, hindering gas exchange. This is consistent with the model results. In terms of gas permeability, the brine volume increased above 10% in the whole ice column on June 3, except in the uppermost layer of sea ice (where e < 10%) because of flushing. The uppermost layer brine volume increased above 10% on June 8.

Only two ice types could be distinguished from the vertical profiles of observed ice salinity and temperature at all sites: unflooded cold ice and summer ice. The observed and simulated ice salinity and temperature profiles are presented for Barrow in Figure 3a and b. During ice
growth (i.e. from January to May), unflooded cold ice is affected by basal congelation only, salt being trapped in the bottom ice layers and released by gravity drainage in the upper ice layers. Hence, the observed salinity profiles exhibit a typical C-shape while temperature decreases linearly with ice depth. The simulated salinity profiles are reasonably close to observations although slightly overestimated during the ice growth period (Figure 3a). Such discrepancies between the model and observations have already been reported by Vancoppenolle et al. (2010) and may partly be related to imprecise parameterization of heat and salt transfer, as well as to an underestimation of the observed ice salinity by a few g kg\(^{-1}\) during in situ sampling, where sea ice is warm and highly saline (Notz et al., 2005). Salinity was also underestimated at the surface of sea ice by the model (Figure 3a).

During summer, snow and ice melt into fresh water that percolates through the brine network and replaces the more saline brine (Vancoppenolle et al., 2007). This flushing of saline brines results in the typical summer ice salinity and temperature profiles observed on June 5. Although the details of the profiles are difficult to reproduce because flushing is a three-dimensional threshold process that depends on snow melt and thus on a good representation of the snow cover, the model seems to represent the seasonality of sea ice salinity and temperature qualitatively well.

During the INTERICE IV experiment (Figure 1b), sea-ice grows regularly from September 3 to September 22 and maximal simulated ice thickness (i.e. 0.21 m) is attained at the end of the experiment. This is consistent with observations that showed sea ice growing from 4.7 cm on September 4 to 21.2 cm on September 18. No snow was simulated at INTERICE. Simulated and observed salinity, temperature and brine volume at INTERICE are also typical of cold atmospheric conditions, with high ice salinity and low temperature and brine volume in the
upper ice layers (Figure 1b and Figure 4a and b). The whole sea ice cover became permeable at INTERICE along with increasing air temperature on September 17 (month 9.48, Figure 1b).

4.2. Model validation

For simplicity, in the rest of the text, the dissolved Ar, the Ar contained within gas bubbles and the total Ar (i.e. the sum of dissolved Ar and Ar contained in gas bubbles) are redefined by the following expressions:

\[
dAR = e \zeta dAr \quad \text{eq. 13}
\]

\[
bAr = C bAr \quad \text{eq. 14}
\]

\[
TAr = C^{TAr} = bAr + dAr \quad \text{eq. 15}
\]

The average results of the CTRL run with respect to \(TAr \) along with the minimum and maximum simulated \(TAr \) and the range of observed \(TAr \) are presented in Figure 5 for the winter, early spring and late spring for Barrow and in Figure 4c for the ice growth period at INTERICE. At Barrow, in winter, the simulated Argon is close to \(TAr \) observations although slightly overestimating Ar in the lower two thirds of sea ice. In early spring, most \(TAr \) observations fall between the minimum and maximum simulated \(TAr \), although the higher \(TAr \) concentrations observed in the upper half of the ice cannot be simulated with the model described here. In late spring, the accumulation of \(TAr \) near the ice surface is represented by the model. \(TAr \) is, however, slightly underestimated in the lower layers in late spring by the CTRL run. At INTERICE, the \(TAr \) observations fall within the range of simulated \(TAr \) in the upper ice layers. \(TAr \) is slightly overestimated in the lower ice layers. Hence, with a few exceptions, the model presented here represents qualitatively well \(TAr \) within sea ice at Barrow and INTERICE.
4.3. Simulation of gas dynamics within sea ice

The simulated bulk ice dissolved Ar concentration \((dAr, \text{ mmol Ar} \text{ m}^{-3}\text{ of ice})\), saturation state \(\left(\frac{dAr}{\text{sat}} \times 100\right)\), the simulated amount of Ar contained within gas bubbles \((bAr, \text{ mmol Ar} \text{ m}^{-3}\text{ of ice})\) and simulated total Ar \((TAr, \text{ mmol Ar} \text{ m}^{-3}\text{ of ice})\) are presented for the CTRL run at Barrow and INTERICE (Figure 6a and b). The goal of this section is to describe the general distribution of simulated \(TAr\) across the ice growing and melting season at the two sites and in relation to the distribution of simulated \(dAr\) and \(bAr\).

At Barrow, the simulated \(bAr\) accounts for most of the simulated \(TAr\) variability in the upper layers of sea ice during winter (Figure 6a). Indeed, in the upper layers of sea ice, the simulated \(dAr\) decreases regularly throughout the simulations (with maximum and minimum \(dAr\) concentrations of 3.6 and 0.35 mmol m\(^{-3}\) of bulk ice, respectively at the beginning of the simulation and at the point when ice starts melting, June 3). As sea ice cools down, the simulated \(dAr\) concentration increases within brine inclusions and becomes supersaturated. Once the simulated \(dAr\) is above saturation gas bubbles nucleate and the excess \(dAr\) is transferred to \(bAr\), while the remaining \(dAr\) follows the Ar solubility line. At Barrow, gas bubbles mostly nucleate in the upper two third of sea ice where simulated saturation levels > 100% are found. The transfer of \(dAr\) to \(bAr\) is highest in the middle third of sea ice and the simulated \(bAr\) mostly accumulates in layer 8 (ice depth = 0.8 * \(h_i\)) during winter and early spring because the simulated brine network is not connected and does not allow gas bubbles to escape to the atmosphere. This simulation of gas bubble nucleation, and more particularly of Ar contained within gas bubbles, \(bAr\), compares well with the theoretical observations of Ar contained within gas bubbles (subtracting the solubility of Ar to the total Ar measured \textit{in situ}).
during both the winter and early spring (Figure 7). In addition, the model seems to represent TAr observations reasonably well during winter and early spring at Barrow (Figure 5).

On the contrary, due to the absence of gas bubbles, the simulated dAr accounts for most of the simulated TAr variability in the lower layers of sea ice at Barrow during winter (February 3 to April 1) and early spring (April 2 to May 15). In the lower part of sea ice, the simulated dAr remains high from the beginning of the simulations (with a concentration of 5.3 mmol m$^{-3}$ of bulk ice on January 16) to the point when ice starts to melt (i.e. with a concentration of 3.2 mmol m$^{-3}$ of bulk ice on June 3, Figure 6) and remains close to its solubility, which explains the absence of gas bubbles. Brine convection in the basal ice layers continuously supplies/removes Ar to/from brine inclusions during ice growth to ensure the continuity of dissolved gas concentration between seawater and brine.

When ice starts to melt and the simulated brine volume increases throughout the ice column, connecting the brine network (on June 3 at Barrow, Figure 1a), the simulated bAr starts to migrate upwards (with bAr of 30.9 mmol Ar m$^{-3}$ of bulk ice for layer 1, ice depth = 0.1 * h_i, on June 3) because of gas bubble buoyancy. Because the simulated bAr migrates upward, the simulated TAr is mostly driven by the simulated dAr during ice melt (Figure 6). The simulated dAr decreases to 0.05 and 1.1 mmol Ar m$^{-3}$ of bulk ice at the end of the simulation in the upper and lower layers of sea ice, respectively. During snow and ice melt in spring, freshwater percolates through the brine network and flushes the saline and Ar concentrated brines towards the underlying ocean, decreasing the simulated TAr in all ice layers.
At INTERICE, with 2.8 and 9.7 mmol Ar m\(^{-3}\) of bulk ice in the upper and lower layers of sea ice during ice growth (i.e. from September 3 to 18), the simulated \(dAr\) accounts for a major part of \(TAr\) (Figure 6b). During this period, gas bubbles only formed in the upper half of sea ice and the simulated \(bAr\) increased up to 0.6 mmol Ar m\(^{-3}\) in layer 4 (ice depth = 0.4 \(h_i\)) on September 17 (Figure 6b), while the simulated \(dAr\) remained close to its solubility line in the upper ice layers and was continuously resupplied by brine convection in the lower ice layers.

The shorter ice growth period between INTERICE (i.e. weeks) and Barrow (i.e. months) may explain the observed difference in the contribution of \(bAr\) to \(TAr\). After air temperature starts to increase on September 18, ice melt has not started yet but gas bubbles migrate towards the surface and the simulated \(bAr\) accumulates in the uppermost ice layers (with a maximum \(bAr\) of 2.5 mmol Ar m\(^{-3}\) of bulk ice). During this period, due to a high porosity in the lower sea ice layers, the simulated \(dAr\) is still resupplied from the underlying water and stays high (8.4 mmol Ar m\(^{-3}\) of bulk ice) while, therefore, the simulated \(TAr\) is driven by \(bAr\) and \(dAr\) in, respectively, the upper and lower ice layers. The model also represents \(TAr\) observations reasonably well at INTERICE (Figure 4c).

4.3.1. **Model sensitivity**

4.3.1.1. **Sensitivity of total argon to vertical resolution and initial conditions**

We first tested the sensitivity of the model to the vertical resolution, i.e. the number of vertical layers used. Sensitivity experiments show that changing the vertical resolution of the model to 5 or 20 layers (i.e. runs 5LAY and 20LAY) brings some variability in the shape of the vertical distribution of Ar within sea ice (with shifts in the location and number of Argon peaks, for example), which may be due to either differing timing of vertical transport events or different magnitudes of the vertical fluxes at different resolutions (Figure 8a). However, the changes to
the overall total argon content are relatively modest and the main gas dynamics features are captured by all three runs. In the CTRL, 5LAY and 20LAY runs, gas bubbles accumulate in the lower third of sea ice during winter and early spring, and accumulate near the surface of sea ice in late spring. The simulated accumulation of gas bubbles near the surface of the ice in spring is however different between the CTRL, the 5LAY and the 20LAY experiments. In addition, changing the vertical resolution of the model to 5 or 20 layers does not modify significantly the results of the model in terms of argon budget. The differences in total argon terms of tendency (due to ice growth, brine drainage and gas bubble flux) between the CTRL run and the 5LAY and 20LAY runs are less than 5%. In terms of total Argon in sea ice (dissolved + bubbles), the differences between the CTRL and the 5LAY and 20LAY runs are 10.1 and 2.6%, respectively. Finally, a sensitivity analysis to the number of layers shows that, in terms of total Ar within sea ice (TAr), total dissolved Ar (TdAr) and total Ar contained within gas bubbles (TbAr), the model shows small changes with different resolutions (Figure 8b).

We then tested the sensitivity of the model to initial Ar concentrations. The results of two sensitivity runs (H-INIT and L-INIT, with, respectively, doubled and halved initial CTRL argon concentration, see Table 1) are presented in Figure 9 along with the CTRL run. The simulated argon is significantly higher than observations in the H-INIT run during winter. The CTRL and L-INIT runs better approximate the observed argon concentration at this period of the year. However, for all tested initial Ar concentrations, the model overestimates the accumulation of gas bubbles in the lower third of sea ice, which may be related to uncertainties in the way the model represent some processes such as the gas bubbles nucleation rates (see next section). On the contrary, in early spring, only the CTRL and H-INIT runs give a good estimation of argon throughout sea ice compared to observations, the simulation of argon by the L-INIT run being significantly lower than the observed argon in early spring in the top half of
sea ice. In the lower third of sea ice, the accumulation of gas bubbles is well represented by the
three runs in early spring. Finally, in late spring, the three runs all simulate an accumulation of
gas bubbles close to the ice surface and all give a fairly good estimation of argon through sea
ic. In this context, we are confident that the initialization of argon as done in the CTRL run,
i.e. scaling with salinity, is a reasonable choice.

4.3.2. Sensitivity of total argon to gas bubble nucleation rate

The results of the sensitivity runs CTRL, BUB1, BUB2 and BUB3 with respect to TAr are
presented in Figure 10 for winter (February 3 to April 1), early spring (April 2 to May 15) and
late spring (the period at which ice started to melt; from June 3 to June 8). These four runs
differ in terms of the value of the R^{bub} parameter; the rate at which dAr is transferred to gas
bubbles (see Table 1 for R^{bub} values). As long as a significant amount of bubbles is not formed
in sea ice (i.e. before April 10) the vertically averaged differences between the observations and
the BUB1 and BUB2 runs – with respectively no and low nucleation rates – are small (see
Table 2). These two runs best represent winter observations, with TAr concentrations lying on
the dilution line, e.g., varying similarly as ice salinity, assuming the same Ar/Salinity ratio in
seawater and sea ice (Figure 10). Once the bAR becomes significant in early spring, the low and
nil R^{bub} rates in BUB1 and BUB2 runs are not large enough to represent the observed
accumulation of TAr that is present in the bottom layers of sea ice. On April 10 and May 8, the
vertical averages of the BUB1 and BUB2 runs underestimate the vertically averaged TAr
(Table 2). In addition, during late spring, and therefore at the time of ice melt, the accumulation
of bAr and thus of TAr that is observed in the top two layers of sea ice is not represented
adequately by the BUB1 run. On the contrary, the BUB2 run results slightly underestimate this
accumulation of gas bubbles in the top layers of sea ice and give a good representation of TAr
in the lower part of sea ice.
The vertically averaged difference between the observations and the CTRL and BUB3 runs – with respectively mild and high bubble nucleation rates – are high during winter. With such mild or high R_{bub}, bAr accumulates within the bottom layers of sea ice (Figure 10) and TAr is overestimated in the lower third of the ice (Table 2). The vertically averaged difference between the observed TAr and the results of the CTRL and BUB3 runs are small on February 3 but relatively high on April 1 (Table 2). For the early spring period, the CTRL run represents adequately the accumulation of Ar in the bottom layers of sea ice (Figure 10). In particular, on April 10, the CTRL run gives the best representation of TAr within the sea ice column (Table 2), while the run BUB3 overestimates TAr (Table 2 and Figure 10). Therefore, the results of the CTRL run seem to give the best representation of TAr during the early spring period. In late spring, once the simulated brine network is connected, gas bubbles rise through the ice column. At Barrow, on June 5, the simulated brine network opened in all ice layers but in the uppermost layer, because of the formation of new sea ice due to flushing and snow melting. As a result, bAr, and therefore TAr, accumulated within the uppermost ice layer (Figure 10). The CTRL and BUB3 runs seem to overestimate this accumulation of TAr in the top layer of sea ice during late spring (Figure 10). On the contrary, due to the rapid rise of gas bubbles, the CTRL and BUB3 runs both underestimate TAr in the lower layers of sea ice in late spring. Hence, R_{bub}, which governs how much Ar is stored in gas bubbles in late winter and spring, plays a very important role in gas dynamics within sea ice although different R_{bub} seem to give better results at different times of ice growth/melt.

4.3.3. Sensitivity of gas bubble rise to sea ice permeability

The results of the sensitivity runs CTRL, BUB_RISE1 and BUB_RISE2 with respect to TAr are presented in Figure 11 for the winter (February 3 to April 1), early spring (April 2 to May 15)
and late spring (the period at which ice started to melt; from June 3 to June 8). These three runs differ in the brine volume threshold above which gas bubbles rise through the sea ice column, e_T^{gas}. During winter, as brine volume fraction is relatively low, the bubbles do not yet escape out of the ice and vertically averaged differences in TAr among the three runs are low. Differences in vertical distribution of TAr are however obvious (Figure 11), as the position of the maximum TAr corresponds to the location of gas bubble accumulation (i.e., where $e=e_T^{gas}$). If a low value of e_T^{gas} is used (i.e. BUB_RISE1), the position of the maximum is higher in the ice than if a large value is used (i.e. BUB_RISE2). Wherever the bAr peak is, the model seems to accumulate too much TAr in winter, for all three runs (Figure 11).

During early spring, brine volume fraction is still relatively low (Figure 1) and gas bubbles are blocked within sea ice brines (Figure 5 and 7). As in winter, the position of the maximum TAr is determined by e_T^{gas} and is different between all three runs, being higher for a low e_T^{gas} (BUB_RISE1) and lower for a high e_T^{gas} (BUB_RISE2). Contrary to winter, vertically averaged differences in TAr are low for all three runs on April 10 (Table 2), when the model seems to best represent TAr. However, on May 8, TAr is significantly underestimated by the BUB_RISE1 run for which e_T^{gas} is small (i.e. 0.05) and for which gas bubbles have escaped to the atmosphere between April 10 and May 8, a period when $0.05 < e < 0.10$.

During late spring and ice melt, brine volume fraction increases (Figure 1a). Gas bubbles have already escaped to the atmosphere between April 10 and May 8 for the BUB_RISE1 run (with a small $e_T^{gas} = 0.05$), hence vertically averaged TAr is not well represented by the results of this run (Figure 11 and Table 2). As seen in the previous section, the results of the CTRL run estimate reasonably well the vertically averaged TAr (Figure 11 and Table 2), representing the accumulation of bAr in the top layers of sea ice, although it is overestimated. On the contrary,
the results of the BUB_RISE2 run, for which e_T^{gas} is large (i.e. 0.15), do not represent well the accumulation of bAr in the uppermost layers of sea ice and overestimates TAr in the bottom 8 layers of sea ice. The sea ice brine volume e is still <0.15 and, for this run, gas bubbles are contained within brine inclusions in the bottom layers of sea ice, overestimating TAr. On the contrary, because gas bubbles have not yet risen to the ice surface, the BUB_RISE2 run underestimates TAr at the ice surface. Therefore, only the CTRL run with $e_T^{gas} = 0.10$ gives a reasonable estimation of TAr distribution in late spring and e_T^{gas}, which determines the vertical position of the maximum bubble concentration during winter, and the time at which gas bubbles rise towards the ice surface and eventually escape to the atmosphere, plays a very important role in gas dynamics within sea ice.

4.3.4. Sensitivity of total Argon to gas exchange formulation

Because no observations of Ar fluxes between sea ice and the atmosphere were available, the sensitivity of the model to the parameterization of ice-atmosphere gas flux needs to be tested indirectly from Ar observations within the ice and more particularly within the top layer of sea ice. The effect of a diffusive gas flux between the ice and the atmosphere is presented in Figure 12 for the runs CTRL, DIFF_FLUX1 and DIFF_FLUX2, which differ in the length of the boundary layer (Z_{BL}) used for the ice-atmosphere flux parameterization. The three runs all include gas bubble flux to the atmosphere as described in Table 1. For these three runs, the gas bubble rise threshold, e_T^{gas}, is 0.10 and gas bubbles have not escaped to the atmosphere before June 8. The different Z_{BL} tested (i.e. 10, 50 and 100 mm) all seem to yield reasonable TAr with respect to observations during the winter, early spring and late spring (Figure 12 and Table 2) and the difference between the observed and simulated TAr is small for all the three runs. In fact, the monthly diffusive flux of Ar to the atmosphere for the CTRL run is 0.02 ± 0.01 mmol Ar m$^{-2}$ which is small compared to the average TAr contained within sea ice during the ice
season: $4.39 \pm 1.5 \text{ mmol Ar m}^{-2}$. In conclusion, the length of Z_{BL}, which governs fluxes of Ar between sea ice and atmosphere, does not play an important role in gas dynamics within sea ice.

5. Discussion

5.1. Sea ice-atmosphere gas fluxes

A degradation of the model is presented in Figure 13. When gas fluxes between sea ice and the atmosphere are considered to be nil (run NO_FLUX with $Z_{BL} = \infty$, Table 1 and red line in Figure 13), almost no difference exist between these results and those of the CTRL run presented in Figure 5. In addition, the differences between the observed and simulated TAr are small for the CTRL run at the two sites studied (Barrow and INTERICE, Table 3). TAr is only slightly overestimated at INTERICE (Table 3). We may, therefore, consider that the diffuse type of flux parameterization we used is a reasonable approach to represent TAr within sea ice at INTERICE too. It also seems that changes in the parameterization of diffusive gas fluxes between sea ice and the atmosphere are of small importance, possibly because diffusive Ar fluxes between sea ice and the atmosphere were low (averaging $0.02 \pm 0.01 \text{ mmol Ar m}^{-2}$ at Barrow) during the period studied (i.e. with all samples obtained before or during ice melt).

This is in apparent contradiction with many studies which reported important gas fluxes between sea ice and the atmosphere (Geilfus et al., 2012; Miller et al., 2011b; Nomura et al., 2010a; Papakyriakou and Miller, 2011) although these studies looked at CO$_2$ fluxes. CO$_2$ is a biogeochemically active gas which is affected by carbonate chemistry (Geilfus et al., 2012; Miller et al., 2011a), by primary production and respiration (Arrigo et al., 2010; Deming, 2010) and by calcium carbonate precipitation and dissolution (Dieckmann et al., 2008; Dieckmann et
al., 2010) within sea ice. Hence, CO$_2$ and Ar fluxes between sea ice and the atmosphere may be
different. Unfortunately, sea ice-atmosphere Ar fluxes have not been measured *in situ* so far
and comparisons must be made with gases other than Ar. In addition, the above cited studies
did not differentiate between sea ice-atmosphere fluxes of gases dissolved within brines and
gases contained within bubbles. When adding diffusive Ar and gas bubble fluxes, we find that
total Ar fluxes were lesser in winter than during ice melt (e.g. in the CTRL simulation at
Barrow, the diffusive gas flux was 0.034 and 0.004 mmol Ar m$^{-2}$ in January and June,
respectively, while the flux of gas bubbles to the atmosphere was 0 and 3.98 mmol Ar m$^{-2}$ in
January and June, respectively). This is consistent with the results of Geilfus et al. (2012) and
Miller et al. (2011b) who observed higher CO$_2$ fluxes in summer than in winter.

Our modelling approach does not take into consideration the effect of wind on gas fluxes
between sea ice and the atmosphere. In the field, sea ice-atmosphere gas fluxes measured *in situ*
depend on wind and on the physical status of snow and ice (Nomura et al., 2010b). Although it
was not necessary in the present study, a modelling effort is needed to constrain the effect of
wind and snow on sea ice-atmosphere gas fluxes. To do so, one must consider two different
approaches. A first approach should consider the effect of wind speed on sea ice-atmosphere
gas fluxes in the presence of a snow cover. Takagi et al. (2005) and Bowling and Massman
(2011) showed that CO$_2$ fluxes between the snow and the atmosphere were enhanced by wind-pumping. In fact, it is possible that, *in situ*, ice-snow gas fluxes are slower processes than snow-atmosphere gas fluxes. The strong gas fluxes reported by the above cited studies may reflect
snow-atmosphere gas fluxes rather than ice-atmosphere gas fluxes. A second approach should
consider the effect of wind pumping on ice-atmosphere gas fluxes in the absence of a snow
cover. To do so one would consider gas exchanges at the ice surface to occur through,
centimetres wide brine openings or meters wide melt ponds. However, no parameterization of
this phenomenon exist in the literature and oceanic approaches (e.g. Wanninkhof, 1992) are likely to overestimate sea ice-atmosphere gas fluxes (Loose et al., 2009). To overcome the lack of existing parameterization, the effect of wind on sea-ice atmosphere gas fluxes should be tested with observations.

5.2. Gas bubble rise through the ice column

A situation for which gas bubble rise is considered nil (i.e. \(e_T^{\text{gas}} = 1 \), the run NO_RISE in Table 1) is presented in Figure 13 (green curve). \(TAr \) is well represented by this run during winter and early spring (with most observations falling near the green curve). However, this configuration presents two caveats. First, in winter and early spring, no layer of high gas concentration is formed, in contrast to observations. Second, with no bubble rise, \(TAr \) is significantly overestimated during ice melt, when gas bubbles are efficiently transporting Ar towards the surface in the CTRL simulation. This run shows the importance of the parameterization of the gas bubble rise through the ice column. Because of their buoyancy, gas bubbles are expected to rise through the ice column when the brine network is sufficiently connected. Although the presence of gas bubbles within sea ice has been reported before (Light et al., 2003; Tison et al., 2002) their rise through the sea ice column has not been described so far but indirectly by Zhou et al. (submitted) who observed that gas bubbles were only present in the uppermost layer of sea ice when the brine network opened during ice melt.

The commonly accepted brine volume threshold of 5% (Eide and Martin, 1975; Golden et al., 1998) seems too small for gas permeability to reproduce the rise of gas bubbles through sea ice. In run BUB_RISE1 (with \(e_T^{\text{gas}} = 5\% \), Figure 11), the depth of maximum gas concentration is too high in early spring and the gas loss in late spring occurs too early. A higher threshold (i.e.
$e_{T}^{gas} = 10\%$) as used in the CTRL run gives the best results in terms of TAr during winter, early and late spring. This discrepancy may be explained by the tortuosity of sea ice, i.e. the physical structure of brine channels. Brine inclusions are vertical tubular structure attended by smaller tributary channels (Light et al., 2003) within which gas bubbles may get trapped even when $5\% < e < 10\%$. It should also be noted that the brine volume threshold of 5% is accepted for columnar ice (Golden et al., 1998) but may be higher for other ice types (Ono and Kasai, 1985; Weeks, 2010). This is also in agreement with Loose et al. (2011b) who reported gas diffusion to occur through young sea ice for brine volume fractions between 6.1 and 7.9%. A higher gas bubble permeability threshold ($e_{T}^{gas} = 15\%$, as used in BUB_RISE2, Figure 11) spuriously blocks TAr both in winter, deep into the ice; and in summer, after the observations suggest significant argon depletion in the lower layers of sea ice. Such a value is therefore not adapted to represent gas bubble rise in the model used here. Observations of the depth of the maximum gas concentration in late winter, as well as a precise characterization of the ice temperature, salinity, gas bubbles and brine inclusions properties may help to better understand this important process.

The accumulation of argon near the ice surface during late spring seems to be well represented, although overestimated, by the rise of gas bubbles when the 10% permeability threshold is used (CTRL run, Figure 11). However, other phenomena may explain the accumulation of argon at that stage of ice melt. First, following brine drainage, the Ar may have originated from a direct input of atmospheric air into ice pores (through void formation; Light et al., 2003). Second, the accumulation of Ar may have been related to the filling of ice pores by snow melt water followed by rapid freezing. Zhou et al. (submitted) provide evidence that the measured concentration of Ar in the top layer of sea ice on June 5 (equivalent to 0.29 ml Ar L$_{ice}^{-1}$ in standard temperature and pressure, STP) was similar to the argon concentration obtained from
the instant freezing of seawater (0.23 ml Ar L_{ice}^{-1} in STP) (Matsuo and Miyake, 1966). Zhou et al. (submitted) concluded that gas accumulation is possible through the formation of superimposed ice (snow melt with subsequent freezing at the ice interface). This calls for more observations and modelling studies.

It should also be noted that, although the model simulates the position of the maximum gas concentration with this 10% permeability threshold, the rise of gas bubbles does not give a good representation of TAr in the lower layers of sea ice on June 5 (Figure 11). After this period, the release of gas bubbles to the atmosphere leaves the ice depleted in argon. This is the result of the model design and cannot be verified in situ for security reason (i.e. sea ice sampling would become too dangerous after a minimum ice thickness is reached). However, this particular subject should be investigated further. In addition, although we only considered small gas bubbles to nucleate within sea ice in the present study, it is possible that temperature had an effect on gas bubble size and, therefore, an effect on gas bubble rise. For example, if we considered the smallest gas bubbles (i.e. 0.004 mm in diameter) that were reported by Light et al. (2003) for sea ice at -15 °C, their potential rising velocity, calculated from the dirty gas bubbles formula of Woolf and Thorpe (1991), would be 10^{-5} m s$^{-1}$ or 0.05 m h$^{-1}$. Under these conditions, it is possible that smaller gas bubbles would require more time to rise through the ice column. On the contrary, gas bubbles larger than 0.1 mm may experience significant interaction and viscous drag with the sidewalls of the brine inclusions, modifying gas bubble rise. This may also explain why the brine volume threshold we found appropriate for gas bubble rise ($e = 10\%$) was higher than the previously reported brine volume threshold for other tracers in sea ice ($e = 5\%$; Golden et al., 1998). Future modelling studies should include the size of gas bubbles as a function of temperature and as a parameter to determine the distribution of gas bubbles within sea ice.
Finally, it is possible that tidal currents also play a role on gas bubble movement within sea ice through forced convection (Neufeld, 2008). For instance, Cota et al. (1987) and Cota and Horne (1989) recognized tidal currents to play a role in nutrients supply to the bottom layers of sea ice. However, because this process is not well understood and has not been modelled so far, we call for other modelling studies to evaluate the role of tides on gas dynamics within sea ice.

5.3. Ar transfer between brines and gas bubbles

A situation for which gas bubble nucleation is considered nil is presented in Figure 13 (run BUB1, blue curve). Gas bubbles increase the TAr content in winter and early spring, and decrease it in summer. In early winter, gas bubbles have had no time yet to efficiently form in the model; therefore ascribing nucleation to zero does not change the results. Later on, in late winter and early spring, if no gas bubbles form, Ar cannot intensively accumulate at a depth ~2/3 x h. In the CTRL simulations with gas bubbles (Figure 5), some Ar from the liquid phase is transferred to bubbles, and simultaneously, brine convection refills brine inclusions in Ar, which induces a net accumulation of Ar within sea ice. This is an Ar-specific form of the brine convective pump evidenced for nutrients by Vancoppenolle et al. (2010). In addition, the run with gas bubble nucleation = 0 does not represent the high TAr concentration at the surface of sea ice during ice melt, when gas bubbles accumulate near the surface in the CTRL run. This experiment, therefore, shows the importance of a precise quantification of the rate of gas transfer between brine inclusions and gas bubbles for a proper quantification of gas budget in sea ice, as highlighted by previous studies (Light et al., 2003; Tison et al., 2002).
The gas bubble nucleation parameterization used here, transferring a determined percentage of the Ar supersaturation above a saturation threshold of 100%, seems to represent qualitatively well the observed T_{Ar} depending on the run and the time of the year studied. Some model tuning was necessary and different nucleation rates best constrain Ar dynamics at Barrow at different periods of the sea ice season (with best results brought by the runs BUB1 and BUB2 during winter, by the runs CTRL and BUB3 during early spring, and by the runs BUB2 and CTRL during late spring), suggesting variable nucleation rates in the field. Therefore, future studies should focus on better understanding what are the main physical drivers of gas bubble nucleation in sea ice, which should help to design better model parameterizations. In fact, some mechanisms of gas bubble formation not considered here may significantly contribute to gas dynamics in sea ice.

The characteristics of brine microstructure should likely play a significant role: Jones et al. (1999) suggest that gas bubbles may form even at low supersaturation if gas cavities pre-exist. On the contrary, Killawee et al. (1998) and Tison et al. (2002) noticed that gas bubble nucleation occur at various supersaturation levels depending on convection at the ice water interface and on ice freezing rates. In addition, gas bubbles may form in brine inclusions when lower density ice melts into higher density brine liquid, forming cavities (i.e. voids, Light et al., 2003). The presence of hydrophobic exopolymeric substances excreted by sea ice sympagic organisms (i.e. ice algae and bacteria), and which are abundant in sea ice (Underwood et al., 2010), may also serve as suitable gas bubble nucleation sites. The presence of gap layers (Fritsen et al., 2001; Kattner et al., 2004) within sea ice may also modify gas dynamics and the distribution of gas bubbles within sea ice. In addition, for other gases such as methane, CH$_4$, gas bubbles may be released from anoxic sediments to the water column (Shakhova and Semiletov, 2007; Shakhova et al., 2009). This is particularly true in the Arctic Ocean where the
East Siberian shelves contribute to about 15% of human CH$_4$ emissions (Shakhova et al., 2009).

Finally, gas bubbles had no physical status in the present model because only one gas was described here, which may explain the low transfer rates between dAr and bAr. These mechanisms may be considered in future modelling attempts.

5.4. Ocean-ice-atmosphere Ar budget

Although Ar is an inert gas (i.e. not affected by biological processes) and is not climatically significant, the seasonal Ar budget between the ocean, sea ice and the atmosphere may well illustrate what are the important processes driving gas concentrations in sea ice. We used our best run (CTRL) at Barrow, to provide a model-based estimate of the contributors to the Ar budget (Figure 14).

In Figure 14a, it can be observed that sea ice stores some of the oceanic Ar during winter and spring (i.e. January to May) before Ar is released to the atmosphere and the underlying ocean during ice melt (i.e. June). The accumulation of Ar within sea ice is mainly caused by the formation of sea ice during winter and spring (with a maximum flux of 4.2 mmol Ar m$^{-2}$ due to ice growth, Figure 14b) and compares well with the integrated argon concentrations (Figure 14a, red crosses) observed by Zhou et al. (submitted). Most of this stored Ar is rejected by convection to the ocean: Ar fluxes from sea ice to the ocean due to brine drainage reach a winter peak at -3.3 mmol Ar m$^{-2}$ in February (Figure 14b). When ice melts in the summer, brine flushing expels some dissolved Ar to the underlying ocean (-1.3 mmol Ar m$^{-2}$) while ice melt induces a small loss of Ar to the ocean (-0.17 mmol Ar m$^{-2}$). Finally, a large amount of Ar is released to the atmosphere via the rising of gas bubbles through the ice column and their release to the atmosphere in June (i.e. -4 mmol Ar m$^{-2}$).
The rapid outgassing of gas bubbles observed here can be related to the higher CO₂ effluxes (i.e. towards the atmosphere) observed by Miller et al. (2011b) in the summer (i.e. April to June) compared to the winter, probably in relation to a higher brine connectivity observed in the summer even though summer wind speeds were lower than those observed during winter. This outgassing of gas bubbles could also be related to the important CO₂ flux to the atmosphere noticed by Nomura et al. (2010a) on May 23 2008 on landfast first year sea ice off Barrow just before sea ice became a CO₂ sink. Compared to other sampling dates, the replicate flux measurements showed a great variation due to a substantial air temperature increase that day compared to other days. Finally, this outgassing of gas bubbles could also be related to the positive CO₂ flux (i.e. towards the atmosphere) that Geilfus et al. (2012) observed as ice temperature increased from -10 to -6 °C before sea ice became a CO₂ sink. Geilfus et al. (2012) observed ice-atmospheric CO₂ fluxes when ice temperature was above -11 °C, which he attributed to ice physics and particularly to higher sea ice brines volume and brine connectivity.

The importance of gas bubble escape to the atmosphere in terms of gas fluxes between sea ice and the atmosphere has not been considered so far and calls for more field studies.

Diffusive Ar fluxes between sea ice and the atmosphere only account for a very small portion of the Ar fluxes between sea ice, the underlying ocean and the atmosphere (with a maximum monthly flux of −0.04 mmol Ar m⁻² in January). This could be due to the lack of a wind pumping type of parameterization in the present study and which should be developed in future studies. However, sensitivity analyses showed that the observed Ar concentrations within sea ice are well represented by a diffusive type of Ar flux between sea ice and the atmosphere (Figure 12). It is possible that the high sea ice-atmosphere gas fluxes reported in the literature
are also related to gas fluxes between ice-free waters and the atmosphere at a time of the year when sea ice is retreating.

6. Conclusion

This study presents the modelling of the basic processes that govern the dynamics of an abiotic gas within first year sea ice. From this study, it appears that a proper model representation of gas bubble nucleation and rise is necessary to realistically capture the seasonality of Ar dynamics within sea ice. The predictions of total argon distribution in winter and early spring are sensitive to the initial concentration of Argon, which is poorly constrained based on the present state of knowledge and observations. As winter ice-atmosphere gas fluxes (not including gas bubble fluxes) are potentially small, a simple diffusive formulation for ice-atmosphere gas fluxes was sufficient to represent Ar distribution within sea ice, and not very influential. Wind-driven outgassing may occur in reality, but such a parameterization was not needed for a proper representation of vertical distribution of Ar in sea ice. Finally, Ar dynamics appear to be dominated by ice growth and brine drainage during winter and early spring; and by an intense and rapid release of gas bubbles to the atmosphere during spring. This release is much higher than the diffusive ice-atmosphere Ar flux, simulated during ice melt. Our study calls for more observational studies of gas bubble dynamics in sea ice.

7. Acknowledgements

We want to thank the F.R.S.-FNRS and Belgian Science Federal Policy Office for funding via FRFC grants no 2.4649.07 and 2.4584.09 and the BIGSOUTH project, respectively. H.G., J.-L. T. and B.D. are senior research associate, research fellow and research associate with the F.R.S.-FNRS. This is MARE contribution 222. M. V. acknowledges support via FP7 grant
BISICLO. Part of the work described in this report was supported by the European Community's Sixth Framework Programme through the grant to the budget of the Integrated Infrastructure Initiative HYDRALAB III, Contract no. 022441(RII3). The authors would like to thank the Hamburg Ship Model Basin (HSVA), especially Kalle Evers and the ice tank crew, for the hospitality, technical and scientific support and the professional execution of the test programme in the Research Infrastructure ARCTECLAB.

8. References

Goosse, H., 1997. Modeling the large-scale behavior of the coupled ocean-sea ice system. Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

Figure 4
Click here to download Figure: Fig.4.T_S_Ar_Interice.eps
Figure 6
Click here to download Figure: Fig.6_contours.eps
Figure 7
Click here to download Figure: Fig.7.Ar_bubbles_mod_vs_obs.eps

Winter

Early spring

Normalized depth

Total Argon (mmol m3)
Figure 9
Click here to download Figure: Fig.9.Sensitivity_init_argon.eps
Figure 14
Click here to download Figure: Fig.14_Ar_budget.eps
Table 1: Sensitivity runs to test the model at Barrow, Alaska. The saturation threshold is $\alpha_{\text{sat}} = 1$ for all runs.

<table>
<thead>
<tr>
<th>Run</th>
<th>Name</th>
<th>Nucleation rate</th>
<th>Gas bubble rise</th>
<th>Ice-atmosphere gas flux</th>
<th>Initial Ar concentration</th>
<th>Vertical resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>CTRL</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>01</td>
<td>5LAY</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>5 layers</td>
</tr>
<tr>
<td>02</td>
<td>20LAY</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>20 layers</td>
</tr>
<tr>
<td>03</td>
<td>L-INIT</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>1.8 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>04</td>
<td>H-INIT</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>7.2 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>05</td>
<td>BUB1</td>
<td>$R_{\text{bub}} = 0 % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>06</td>
<td>BUB2</td>
<td>$R_{\text{bub}} = 10^{-4} % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>07</td>
<td>BUB3</td>
<td>$R_{\text{bub}} = 0.25 % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>08</td>
<td>BUB_RISE1</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.05$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>09</td>
<td>BUB_RISE2</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.15$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>10</td>
<td>DIFF_FLUX1</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 10 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>11</td>
<td>DIFF_FLUX2</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = 100 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>12</td>
<td>NO_RISE</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 1$</td>
<td>$z_{BL} = 50 \text{ mm}$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
<tr>
<td>13</td>
<td>NO_FLUX</td>
<td>$R_{\text{bub}} = 9 \times 10^{-2} % \text{ h}^{-1}$</td>
<td>$e_T^{\text{gas}} = 0.10$</td>
<td>$z_{BL} = \infty$</td>
<td>3.6 mmol m$^{-3}$</td>
<td>10 layers</td>
</tr>
</tbody>
</table>
Table 2: Differences between simulated and observed TAr concentrations (i.e. Ar dissolved within brines and Ar contained within gas bubbles, $TAr = dAr + bAr$ in mmol Ar m$^{-3}$ of bulk ice) for all the sensitivity runs at Barrow (Alaska). The difference between observed and simulated TAr are given as vertical averages of the error ± the standard deviation of the error.

<table>
<thead>
<tr>
<th>Runs</th>
<th>CTRL</th>
<th>03-Feb</th>
<th>01-Apr</th>
<th>10-Apr</th>
<th>08-May</th>
<th>05-June</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUB1</td>
<td>-0.49 ± 2.4</td>
<td>0.98 ± 1.3</td>
<td>-1.26 ± 2.4</td>
<td>-2.76 ± 2.9</td>
<td>-0.22 ± 1.7</td>
<td></td>
</tr>
<tr>
<td>BUB2</td>
<td>-0.49 ± 2.4</td>
<td>1.11 ± 1.3</td>
<td>-1.10 ± 2.4</td>
<td>-2.54 ± 2.8</td>
<td>0.12 ± 1.3</td>
<td></td>
</tr>
<tr>
<td>BUB3</td>
<td>-0.48 ± 2.3</td>
<td>2.88 ± 4.1</td>
<td>0.85 ± 4.3</td>
<td>-0.17 ± 7.1</td>
<td>2.92 ± 12.5</td>
<td></td>
</tr>
<tr>
<td>BUB_RISE1</td>
<td>-0.21 ± 2.5</td>
<td>1.94 ± 3.7</td>
<td>-0.17 ± 3.7</td>
<td>-4.55 ± 2.8</td>
<td>-1.53 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>BUB_RISE2</td>
<td>-0.32 ± 2.5</td>
<td>1.94 ± 1.9</td>
<td>-0.17 ± 1.7</td>
<td>-1.36 ± 2.4</td>
<td>1.66 ± 2.2</td>
<td></td>
</tr>
<tr>
<td>DIFF_FLUX2</td>
<td>-0.64 ± 2.6</td>
<td>1.78 ± 2.3</td>
<td>-0.33 ± 2.8</td>
<td>-1.53 ± 4.1</td>
<td>1.49 ± 8.3</td>
<td></td>
</tr>
<tr>
<td>DIFF_FLUX1</td>
<td>-0.45 ± 2.3</td>
<td>1.98 ± 2.2</td>
<td>-0.13 ± 2.8</td>
<td>-1.32 ± 3.9</td>
<td>1.71 ± 8.9</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Differences between simulated and observed TAr concentrations for the CTRL run at Barrow and INTERICE. The difference between observed and simulated TAr are given at each depth and as vertical averages of the error ± the standard deviation of the error.

<table>
<thead>
<tr>
<th>depth (m)</th>
<th>Barrow (71.3°N, 156.8°W)</th>
<th>INTERICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03-Feb</td>
<td>01-Apr</td>
</tr>
<tr>
<td>0.1</td>
<td>-2.53</td>
<td>1.38</td>
</tr>
<tr>
<td>0.2</td>
<td>-5.15</td>
<td>-1.64</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.35</td>
<td>2.63</td>
</tr>
<tr>
<td>0.4</td>
<td>2.34</td>
<td>0.39</td>
</tr>
<tr>
<td>0.5</td>
<td>1.00</td>
<td>1.93</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.93</td>
<td>0.12</td>
</tr>
<tr>
<td>0.7</td>
<td>1.25</td>
<td>2.55</td>
</tr>
<tr>
<td>0.8</td>
<td>7.07</td>
<td>5.45</td>
</tr>
<tr>
<td>0.9</td>
<td>1.49</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>Average ± stdev</td>
<td>-0.48 ± 2.4</td>
<td>1.94 ± 2.2</td>
</tr>
</tbody>
</table>
Figures legend:

Figure 1: Contoured salinity (g kg\(^{-1}\)), temperature (° C) and brine volume (%) in the ice domain for the CTRL run at (a) Barrow (Alaska) and (b) INTERICE (an ice tank experiment in Hamburg, Germany). Horizontal and vertical axes refer to months and depth from the snow ice interface, respectively. Black crosses indicate observed snow depth and ice thickness.

Figure 2: Simulated brine volume (%) vertical profiles for the CTRL run and as a function of the normalized depth (\(z/h_i\)) during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting (June 3 to June 8). The mean (black line), minimum and maximum (black dotted curve) simulated brine volume are plotted for each period. The mean and standard deviation of observed brine volume for the corresponding periods are plotted (black horizontal lines).

Figure 3: Simulated salinity (g kg\(^{-1}\), a) and temperature (°C, b) vertical profiles for the CTRL run and as a function of the normalized depth (\(z/h_i\)) for 5 sampling stations at Barrow (Alaska). Field observations (black crosses) are plotted for comparison with the model. Initial salinity and temperature profiles are also plotted (red crosses).

Figure 4: Simulated temperature (°C), salinity (g kg\(^{-1}\)) and \(TAr\) vertical profiles for the CTRL run and as a function of the normalized depth (\(z/h_i\)) for the INTERICE experiment during ice growth (September 4 to 17). The mean (black line), minimum and maximum (black dotted curve) simulated
temperature, salinity and TAr are plotted. The mean and standard deviation of observed temperature, salinity and TAr for the corresponding period are plotted (black horizontal lines). Initial salinity, temperature and argon profiles are also plotted (red crosses). The profiles are plotted as a function of the normalized depth (z/h_i).

Figure 5: Simulated vertical profiles of TAr for the CTRL run at BARROW during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting (June 3 to June 8). The mean (black line), minimum and maximum (black dotted curve) simulated TAr are plotted for each period. The mean and standard deviation of observed TAr for the corresponding periods are plotted (black horizontal lines). Only one sampling station was performed during early spring and observed TAr is represented as black crosses. The initial argon profile is also plotted (red crosses). The profiles are plotted as a function of the normalized depth (z/h_i).

Figure 6: Contoured dissolved Argon concentration (mmol m^{-3} of bulk ice, dAr), percent saturation of Ar in brine inclusions ($\%$), Ar quantity present in gas bubbles (mmol m^{-3} of bulk ice, bAr) and total Ar (mmol m^{-3} of bulk ice, TAr), in the ice domain for the CTRL run at (a) Barrow (Alaska) and (b) INTERICE (an ice tank experiment in Hamburg, Germany). Horizontal and vertical axes refer to months and depth from the snow ice interface, respectively.

Figure 7: Simulated vertical profiles of bAr for the CTRL run at BARROW during winter (February 3 to April 1) and early spring (April 2 to May 15. The mean (black line), minimum and maximum (black dotted curve) simulated bAr are plotted for each period. The mean and standard deviation
of observed bAr (i.e. calculated as the difference between the observed TAr and the calculated solubility of Ar) for the corresponding periods are plotted (black horizontal lines). The profiles are plotted as a function of the normalized depth (z/h_i).

Figure 8: a) Simulated vertical profiles of TAr at BARROW for the CTRL run (blue curve), and the sensitivity tests 5LAY (black dotted curve) and 20LAY (green curve) during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting (June 3 to June 8). The mean and standard deviation of observed TAr for the corresponding periods are plotted (black horizontal lines). Only one sampling station was performed during early spring and observed TAr is represented as black crosses. The profiles are plotted as a function of the normalized depth (z/h_i). b) Depth integrated total argon within sea ice (T_{Ar}, dissolved + gas bubbles in mmol Ar m$^{-2}$, blue curve), depth integrated dissolved argon (T_{dAr} in mmol Ar m$^{-2}$, red curve) and depth integrated gas bubbles argon (T_{bAR} in mmol Ar m$^{-2}$, green curve).

Figure 9: Simulated vertical profiles of TAr at BARROW for the CTRL run (blue curve), and the sensitivity tests L-INI (black dotted curve) and H-INI (green curve) during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting (June 3 to June 8). The mean and standard deviation of observed TAr for the corresponding periods are plotted (black horizontal lines). Only one sampling station was performed during early spring and observed TAr is represented as black crosses. The profiles are plotted as a function of the normalized depth (z/h_i).

Figure 10: Simulated vertical profiles of TAr at BARROW for the CTRL run (blue curve), and the sensitivity tests BUB1 (black dotted curve), BUB2 (green curve) and BUB3 (red curve) during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting
(June 3 to June 8). The mean and standard deviation of observed TAr for the corresponding periods are plotted (black horizontal lines). Only one sampling station was performed during early spring and observed TAr is represented as black crosses. The profiles are plotted as a function of the normalized depth (z/h_i).

Figure 11: Simulated vertical profiles of TAr at BARROW for the CTRL run (blue curve), and the sensitivity tests BUB_RISE1 (green curve) and BUB_RISE2 (red curve) during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting (June 3 to June 8). The mean and standard deviation of observed TAr for the corresponding periods are plotted (black horizontal lines). Only one sampling station was performed during early spring and observed TAr is represented as black crosses. The profiles are plotted as a function of the normalized depth (z/h_i).

Figure 12: Simulated vertical profiles of TAr at BARROW for the CTRL run (blue curve), and the sensitivity tests DIFF_FLUX1 (green curve) and DIFF_FLUX2 (red curve) during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting (June 3 to June 8). The mean and standard deviation of observed TAr for the corresponding periods are plotted (black horizontal lines). Only one sampling station was performed during early spring and observed TAr is represented as black crosses. The profiles are plotted as a function of the normalized depth (z/h_i).
Figure 13: Simulated vertical profiles of TAr for the NO_FLUX (red curve), NO_RISE (green curve) and BUB1 (blue curve) runs at BARROW during winter (February 3 to April 1), early spring (April 2 to May 15) and late spring along with ice melting (June 3 to June 8). The mean and standard deviation of observed TAr for the corresponding periods are plotted (black horizontal lines). Only one sampling station was performed during early spring and observed TAr is represented as black crosses. The profiles are plotted as a function of the normalized depth (z/h_i).

Figure 14: (a) Monthly budget of vertically integrated dAr (dark gray) bAr (light gray) for the CTRL run at Barrow (Alaska). The hourly budget of TAr (black curve) and the integrated argon concentrations observed in situ (red crosses) are indicated. (b) Monthly time integrated flux of TAr due to total sea ice growth and melt (dark blue), brine drainage (light blue), ice-atmosphere diffuse Ar flux (dark green) and gas bubble flux (light green) at Barrow (Alaska). The growth and melt of sea ice include the formation of sea ice, the basal growth of sea ice and the surface and basal melt of sea ice. The monthly time integrated ice-atmosphere diffuse argon flux is too low to be observed in the present figure. The red crosses refer to the net monthly changes in TAr from the CTRL run at Barrow (Alaska).