[en] Phosphoinositide 5-phosphatases are critical enzymes in modulating the concentrations of PI(3,4,5)P3, PI(4,5)P2 and PI(3,5)P2. The SH2 domain containing inositol 5-phosphatases SHIP1 and SHIP2 belong to this family of enzymes that dephosphorylate the 5 position of PI(3,4,5)P3 to produce PI(3,4)P2. Data obtained in zebrafish and in mice have shown that SHIP2 is critical in development and growth. Exome sequencing identifies mutations in the coding region of SHIP2 as a cause of opsismodysplasia, a severe but rare chondrodysplasia in human. SHIP2 has been reported to have both protumorigenic and tumor suppressor function in human cancer very much depending on the cell model. This could be linked to the relative importance of PI(3,4)P2 (a product of SHIP2 phosphatase activity) which is also controlled by the PI 4-phosphatase and tumor suppressor INPP4B. In the glioblastoma cell line 1321 N1, that do not express PTEN, lowering SHIP2 expression has an impact on the levels of PI(3,4,5)P3, cell morphology and cell proliferation. It positively stimulates cell proliferation by decreasing the expression of key regulatory proteins of the cell cycle such as p27. Together the data point out to a role of SHIP2 in development in normal cells and at least in cell proliferation in some cancer derived cells.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Elong Edimo, W; Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
Schurmans, Stéphane ; Université de Liège - ULiège > Département de sciences fonctionnelles > Biochimie métabolique vétérinaire
Roger, PP; Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
Erneux, C; Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
Language :
English
Title :
SHIP2 signaling in normal and pathological situations: Its impact on cell proliferation.
Awad A., Sar S., Barre R., Cariven C., Marin M., Salles J.P., et al. SHIP2 regulates epithelial cell polarity through its lipid product that binds to Dlg1, a pathway subverted by Hepatitis C virus core protein. Mol Biol Cell 2013, 14:2171-2185.
Backers K., Blero D., Paternotte N., Zhang J., Erneux C. The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. Adv Enzyme Regul 2003, 43:15-28.
Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 2013, 93:1019-1137.
Below J.E., Earl D.L., Shively K.M., McMillin M.J., Smith J.D., Turner E.H., et al. Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia. Am J Hum Genet 2013, 92:137-143.
Blero D., Payrastre B., Schurmans S., Erneux C. Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch 2007, 455:31-44.
Blero D., Zhang J., Pesesse X., Payrastre B., Dumont J.E., Schurmans S., et al. Phosphatidylinositol 3,4,5-trisphosphate modulation in SHIP2-deficient mouse embryonic fibroblasts. FEBS J 2005, 272:2512-2522.
Cappellini A., Tabellini G., Zweyer M., Bortul R., Tazzari P.L., Billi A.M., et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 2003, 17:2157-2167.
Chalhoub N., Baker S.J. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009, 4:127-150.
Clement S., Krause U., Desmedt F., Tanti J.F., Behrends J., Pesesse X., et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 2001, 409:92-97.
Clement S., Krause U., Desmedt F., Tanti J.F., Behrends J., Pesesse X., et al. Corrigendum: the lipid phosphatase SHIP2 controls insulin sensitivity. Nature 2005, 431:878.
Damen J.E., Liu L., Rosten P., Humphries R.K., Jefferson A.B., Majerus P.W., et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5- triphosphate 5-phosphatase. Proc Natl Acad Sci USA 1996, 93:1689-1693.
Dixon M.J., Gray A., Boisvert F.M., Agacan M., Morrice N.A., Gourlay R., et al. Ascreen for novel phosphoinositide 3-kinase effector proteins. Mol Cell Proteomics 2011, 10:M110.
Dowler S., Currie R.A., Campbell D.G., Deak M., Kular G., Downes C.P., et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 2000, 351:19-31.
Drayer A.L., Pesesse X., De Smedt F., Woscholski R., Parker P., Erneux C. Cloning and expression of a human placenta inositol 1,3,4,5- tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5- phosphatase. Biochem Biophys Res Commun 1996, 225:243-249.
Dubois E., Jacoby M., Blockmans M., Pernot E., Schiffmann S.N., Foukas L.C., et al. Developmental defects and rescue from glucose intolerance of a catalytically-inactive novel Ship2 mutant mouse. Cell Signal 2012, 24:1971-1980.
Dyson J.M., Fedele C.G., Davies E.M., Becanovic J., Mitchell C.A. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012, 58:215-279.
Elong Edimo W., Derua R., Janssens V., Nakamura T., Vanderwinden J.M., Waelkens E., et al. Evidence of SHIP2 S132 phosphorylation, its nuclear localization and stability. Biochem J 2011, 439(3):391-401.
Elong Edimo W., Janssens V., Waelkens E., Erneux C. Reversible Ser/Thr SHIP phosphorylation: a new paradigm in phosphoinositide signalling?. BioEssays 2012, 34:634-642.
Elong Edimo W., Vanderwinden J.M., Erneux C. SHIP2 signalling at the plasma membrane, in the nucleus and at focal contacts. Adv Biol Regul 2013, 53:28-37.
Franke T.F., Kaplan D.R., Cantley L.C., Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997, 275:665-668.
Fuhler G.M., Brooks R., Toms B., Iyer S., Gengo E.A., Park M.Y., et al. Therapeutic potential of SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 inhibition in cancer. Mol Med 2012, 18:65-75.
Fukui K., Wada T., Kagawa S., Nagira K., Ikubo M., Ishihara H., et al. Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5'-phosphatase 2) on insulin signaling and glucose metabolism in mice. Diabetes 2005, 54:1958-1967.
Hamilton M.J., Ho V.W., Kuroda E., Ruschmann J., Antignano F., Lam V., et al. Role of SHIP in cancer. Exp Hematol 2011, 39:2-13.
Hegemann B., Hutchins J.R., Hudecz O., Novatchkova M., Rameseder J., Sykora M.M., et al. Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 2011, 4:rs12.
Hori H., Sasaoka T., Ishihara H., Wada T., Murakami S., Ishiki M., et al. Association of SH2-containing inositol phosphatase 2 with the insulin resistance of diabetic db/db mice. Diabetes 2002, 51:2387-2394.
Huber C., Faqeih E.A., Bartholdi D., Bole-Feysot C., Borochowitz Z., Cavalcanti D.P., et al. Exome sequencing identifies INPPL1 mutations as a cause of opsismodysplasia. Am J Hum Genet 2013, 92:144-149.
Jurynec M.J., Grunwald D.J. SHIP2, a factor associated with diet-induced obesity and insulin sensitivity, attenuates FGF signaling invivo. Dis Model Mech 2010, 3:733-742.
Kaisaki P.J., Delepine M., Woon P.Y., Sebag-Montefiore L., Wilder S.P., Menzel S., et al. Polymorphisms in type II SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes 2004, 53:1900-1904.
Kaneko K., Ueki K., Takahashi N., Hashimoto S., Okamoto M., Awazawa M., et al. Class IA phosphatidylinositol 3-kinase in pancreatic beta cells controls insulin secretion by multiple mechanisms. Cell Metab 2010, 12:619-632.
Kavanaugh W.M., Pot D.A., Chin S.M., Deuter-Reinhard M., Jefferson A.B., Norris F.A., et al. Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2. Curr Biol 1996, 6:438-445.
Lioubin M.N., Algate P.A., Tsai S., Carlberg K., Aebersold A., Rohrschneider L.R. p150Ship, a signal transduction molecule with inositol polyphosphate-5- phosphatase activity. Genes Dev 1996, 10:1084-1095.
Ma K., Cheung S.M., Marshall A.J., Duronio V. PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine PKB activity. Cell Signal 2008, 20:684-694.
Mandl A., Sarkes D., Carricaburu V., Jung V., Rameh L. Serum withdrawal-induced accumulation of phosphoinositide 3-kinase lipids in differentiating 3T3-L6 myoblasts: distinct roles for Ship2 and PTEN. Mol Cell Biol 2007, 27:8098-8112.
McNulty S., Powell K., Erneux C., Kalman D. The host phosphoinositide 5-phosphatase SHIP2 regulates dissemination of vaccinia virus. JVirol 2011, 85:7402-7410.
Nakatsu F., Perera R.M., Lucast L., Zoncu R., Domin J., Gertler F.B., et al. The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. JCell Biol 2010, 190(3):307-315.
Pesesse X., Deleu S., De Smedt F., Drayer L., Erneux C. Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem Biophys Res Commun 1997, 239:697-700.
Pesesse X., Dewaste V., De Smedt F., Laffargue M., Giuriato S., Moreau C., et al. The Src homology 2 domain containing inositol 5-phosphatase SHIP2 is recruited to the epidermal growth factor (EGF) receptor and dephosphorylates phosphatidylinositol 3,4,5-trisphosphate in EGF- stimulated COS-7 cells. JBiol Chem 2001, 276:28348-28355.
Pesesse X., Moreau C., Drayer A.L., Woscholski R., Parker P., Erneux C. The SH2 domain containing inositol 5-phosphatase SHIP2 displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5- tetrakisphosphate 5-phosphatase activity. FEBS Lett 1998, 437:301-303.
Pirruccello M., De Camilli P. Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL. Trends Biochem Sci 2012, 37(4):134-143.
Prasad N., Topping R.S., Decker S.J. SH2-containing inositol 5'-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol Cell Biol 2001, 21:1416-1428.
Prasad N.K., Tandon M., Badve S., Snyder P.W., Nakshatri H. Phosphoinositol phosphatase SHIP2 promotes cancer development and metastasis coupled with alterations in EGF receptor turnover. Carcinogenesis 2008, 29:25-34.
Raaijmakers J.H., Deneubourg L., Rehmann H., de K.J., Zhang Z., Krugmann S., et al. The PI3K effector Arap3 interacts with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Cell Signal 2007, 19:1249-1257.
Scheid M.P., Huber M., Damen J.E., Hughes M., Kang V., Neilsen P., et al. Phosphatidylinositol (3,4,5)P3 is essential but not sufficient for protein kinase B (PKB) activation; phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473: studies using cells from SH2-containing inositol-5-phosphatase knockout mice. JBiol Chem 2002, 277:9027-9035.
Sharrard R.M., Maitland N.J. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines. Cell Signal 2007, 19:129-138.
Sleeman M.W., Wortley K.E., V Lai K.M., Gowen L.C., Kintner J., Kline W.O., et al. Absence of the lipid phosphatase SHIP2 confers resistance to diary obesity. Nat Medicine 2005, 11:199-205.
Soeda Y., Tsuneki H., Muranaka H., Mori N., Hosoh S., Ichihara Y., et al. The inositol phosphatase SHIP2 negatively regulates insulin/IGF-I actions implicated in neuroprotection and memory function in mouse brain. Mol Endocrinol 2010, 24:1965-1977.
Song M.S., Salmena L., Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012, 283-296.
Taylor V., Wong M., Brandts C., Reilly L., Dean N.M., Cowsert L.M., et al. 5' phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 2000, 20:6860-6871.
Venkatareddy M., Cook L., Abuarquob K., Verma R., Garg P. Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin. PLoS One 2011, 6:e28710.
Wisniewski D., Strife A., Swendeman S., Erdjument-Bromage H., Geromanos S., Kavanaugh W.M., et al. Anovel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5- phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 1999, 93:2707-2720.
Xie J., Erneux C., Pirson I. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity?. BioEssays 2013, 35:733-743.
Xie J., Vandenbroere I., Pirson I. SHIP2 associates with intersectin and recruits it to the plasma membrane in response to EGF. FEBS Lett 2008, 582:3011-3017.
Ye Y., Jin L., Wilmott J.S., Hu W.L., Yosufi B., Thorne R.F., et al. PI(4,5)P2 5-phosphatase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma. Nat Commun 2013, 4:1508.
Yoshinaga S., Ohkubo T., Sasaki S., Nuriya M., Ogawa Y., Yasui M., et al. Aphosphatidylinositol lipids system, lamellipodin, and Ena/VASP regulate dynamic morphology of multipolar migrating cells in the developing cerebral cortex. JNeurosci 2012, 32:11643-11656.
Yu J., Peng H., Ruan Q., Fatima A., Getsios S., Lavker R.M. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J 2010, 24:3950-3959.
Yu J., Ryan D.G., Getsios S., Oliveira-Fernandes M., Fatima A., Lavker R.M. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 2008, 105:19300-19305.
Zhou X., Liu Y., Tan G. Prognostic value of elevated SHIP2 expression in laryngeal squamous cell carcinoma. Arch Med Res 2011, 42:589-595.
Zhuang G., Hunter S., Hwang Y., Chen J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via PI3 kinase-dependent Rac1 activation. JBiol Chem 2006, 282:2683-2694.