Reference : Heat and mass transfer coefficient analysis during rock convective drying
Scientific congresses and symposiums : Unpublished conference/Abstract
Engineering, computing & technology : Chemical engineering
Engineering, computing & technology : Materials science & engineering
Engineering, computing & technology : Civil engineering
http://hdl.handle.net/2268/156209
Heat and mass transfer coefficient analysis during rock convective drying
English
[fr] Analyse des coefficients de transfert de masse et de chaleur durant le séchage convectif de roches
Prime, Noémie [Université de Liège - ULiège > Département ArGEnCo > Géomécanique et géologie de l'ingénieur >]
Housni, Zakarya [Ecole Nationale de l'Industrie Minérale de Rabat, Maroc > > > >]
Fraikin, Laurent mailto [Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Procédés et développement durable >]
Léonard, Angélique mailto [Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Procédés et développement durable >]
Charlier, Robert mailto [Université de Liège - ULiège > Département ArGEnCo > Géomécanique et géologie de l'ingénieur >]
Levasseur, Séverine [Université de Liège - ULiège > Département ArGEnCo > Géomécanique et géologie de l'ingénieur >]
Aug-2013
9
No
No
International
Eurodrying'2013
du 2 octobre 2013 au 4 octobre 2013
Ecole Centrale Paris
Paris
France
[en] Convective drying ; mass and heat transfer ; rocks ; kinetics
[en] This paper presents some experimental investigations about convective drying of rocks. Cylindrical samples made of limestone are dried from one their bases submitted to an air flow, while the other surfaces are hermetically covered. All other factors being equal, the influence of two parameters is looked after: the cylinder height, equivalent to the volume/surface ratio of the samples, and the direction of the air flow. The tests are interpreted both from the drying curves and from the values of water and heat transfer coefficients.
Results first highlight that air flow incidence on the dried surface changes the kinetics and the transfer coefficient values. It can thus be supposed that the air flow direction would modify the thickness of the transfer limit layer at the surface and/or would make invalid the hypothesis of such a limit layer model for some flow configurations.
Besides, the volume/surface ratio is shown to be correlated to the evaporation flux on the constant drying phase, and thus to the transfer coefficients. Nonetheless, this link tends to disappear from sufficiently high values of the volume/surface ratio since, in this case, the transfer coefficients reach constant values. This effect, in addition to other observations made on the drying curves, well fits with the hypothesis of a hydraulically connected layer below the drying surface, which would maintain during the constant drying rate phase. In the present case, this layer would have a thickness of around 20 to 30 mm.
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
FRFC n°2.4596.12
Researchers ; Professionals ; Students ; General public
http://hdl.handle.net/2268/156209

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Eurodrying'2013.pdfAuthor preprint553.72 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.