Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis
[en] The cold-adapted cellulase CelG has been purified from the culture supernatant of the Antarctic bacterium Pseudoalteromonas haloplanktis and the gene coding for this enzyme has been cloned, sequenced and expressed in Escherichia coli. This cellulase is composed of three structurally and functionally distinct regions: an N-terminal catalytic domain belonging to glycosidase family 5 and a C-terminal cellulose-binding domain belonging to carbohydrate-binding module family 5. The linker of 107 residues connecting both domains is one of the longest found in cellulases, and optimizes substrate accessibility to the catalytic domain by drastically increasing the Surface of cellulose available to a bound enzyme molecule. The psychrophilic enzyme is closely related to the cellulase Cel5 from Erwinia chrysanthemi. Both k(cat) and k(cat)/K-m values at 4 degreesC for the psychrophilic cellulase are similar to the values for Cel5 at 30-35 degreesC, suggesting temperature adaptation of the kinetic parameters. The thermodynamic parameters of activation of CelG suggest a heat-labile, relatively disordered active site with low substrate affinity, in agreement with the experimental data. The structure of CelG has been constructed by homology modelling with a molecule of cellotetraose docked into the active site. No structural alteration related to cold-activity can be found in the catalytic cleft, whereas several structural factors in the overall structure can explain the weak thermal stability, suggesting that the loss of stability provides the required active-site mobility at low temperatures.
Gerday, Charles ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Language :
English
Title :
Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis
Beguin, P. and Aubert, J. P. (1994) The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25-58
Singh, A. and Hayashi, K. (1995) Microbial cellulases: protein architecture, molecular properties, and biosynthesis. Adv. Appl. Microbiol. 40, 1-44
Tomme, P., Warren, R. A. and Gilkes, N. R. (1995) Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37, 1-81
Cavicchioli, R., Siddiqui, K. S., Andrews, D. and Sowers, K. R. (2002) Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13, 253-261
Deming, J. W. (2002) Psychrophiles and polar regions. Curr. Opin. Microbiol. 5, 301-309
Feller, G. and Gerday, C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200-208
Shoham, Y., Lamed, R. and Bayer, E. A. (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7, 275-281
Carrard, G., Koivula, A., Soderlund, H. and Beguin, P. (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. U.S.A. 97, 10342-10347
Jervis, E. J., Haynes, C. A. and Kilburn, D. G. (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J. Biol. Chem. 272, 24016-24023
Receveur, V., Czjzek, M., Schulein, M., Panine, P. and Henrissat, B. (2002) Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J. Biol. Chem. 277, 40887-40892
Bayer, E. A., Chanzy, H., Lamed, R. and Shoham, Y. (1998) Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8, 548-557
Henrissat, B. and Bairoch, A. (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316, 695-696
Tomme, P., Warren, R. A., Miller, Jr, R. C., Kilburn, D. G. and Gilkes, N. R. (1995) Cellulose-binding domains: classification and properties. In Enzymatic Degradation of Insoluble Polysaccarides (Saddler, J. N. and Penner, M., eds.), pp. 142-163, American Chemical Society, Washington
Feller, G., Lonhienne, T., Deroanne, C., Libioulle, C., Van Beeumen, J. and Gerday, C. (1992) Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267, 5217-5221
Brun, E., Gans, P., Marion, D. and Barras, F. (1995) Overproduction, purification and characterization of the cellulose-binding domain of the Erwinia chrysanthemi secreted endoglucanase EGZ. Eur. J. Biochem. 231, 142-148
Py, B., Bortoli-German, I., Haiech, J., Chippaux, M. and Barras, F. (1991) Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis. Protein. Eng. 4, 325-333
Py, B., Chippaux, M. and Barras, F. (1993) Mutagenesis of cellulase EGZ for studying the general protein secretory pathway in Erwinia chrysanthemi. Mol. Microbiol. 7, 785-793
Lonhienne, T., Baise, E., Feller, G., Bouriotis, V. and Gerday, C. (2001) Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases. Biochim. Biophys. Acta 1545, 349-356
Lonhienne, T., Gerday, C. and Feller, G. (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta 1543, 1-10
Feller, G., D'Amico, S., Benotmane, A. M., Joly, F., Van Beeumen, J. and Gerday, C. (1998) Characterization of the C-terminal propeptide involved in bacterial wall spanning of α-amylase from the psychrophile Alteromonas haloplanctis. J. Biol. Chem. 273, 12109-12115
Linder, M. and Teeri, T. T. (1997) The roles and function of cellulose-binding domains. J. Biotechnol. 57, 15-28
Barras, F., Bortoli-German, I., Bauzan, M., Rouvier, J., Gey, C., Heyraud, A. and Henrissat, B. (1992) Stereochemistry of the hydrolysis reaction catalyzed by endoglucanase Z from Erwinia chrysanthemi. FEBS Lett. 300, 145-148
Bortoli-German, I., Haiech, J., Chippaux, M. and Barras, F. (1995) Informational suppression to investigate structural functional and evolutionary aspects of the Erwinia chrysanthemi cellulase EGZ. J. Mol. Biol. 246, 82-94
Brun, E., Moriaud, F., Gans, P., Blackledge, M. J., Barras, F. and Marion, D. (1997) Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi. Biochemistry 36, 16074-16086
Chapon, V., Czjzek, M., El Hassouni, M., Py, B., Juy, M. and Barras, F. (2001) Type II protein secretion in Gram-negative pathogenic bacteria: the study of the structure/secretion relationships of the cellulase Cel5 (formerly EGZ) from Erwinia chrysanthemi. J. Mol. Biol. 310, 1055-1066
Davies, G. and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3, 853-859
Wang, Q., Tull, D., Meinke, A., Gilkes, N. R., Warren, R. A., Aebersold, R. and Withers, S. G. (1993) Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-β-1,4-glucanase. J. Biol. Chem. 268, 14096-14102
Feller, G. (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell. Mol. Life Sci. 60, 648-662
Fields, P. A. and Somero, G. N. (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc. Natl. Acad. Sci. U.S.A. 95, 11476-11481
Feller, G. and Gerday, C. (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell. Mol. Life Sci. 53, 830-841
Fersht, A. (1977) Enzyme Structure and Mechanism, Freeman and Co, New York
Vyas, N. K. (1991) Atomic features of protein-carbohydrate interactions. Curr. Opin. Struct. Biol. 1, 732-740
Borders, Jr, C. L., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S., Eldridge, A. M. and Pett, V. B. (1994) A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 3, 541-548
Dadarlat, V. M. and Post, C. B. (2003) Adhesive-cohesive model for protein compressibility: an alternative perspective on stability. Proc. Natl. Acad. Sci. U.S.A. 100, 14778-14783
Bell, G. S., Russell, R. J., Connaris, H., Hough, D. W., Danson, M. J. and Taylor, G. L. (2002) Stepwise adaptations of citrate synthase to survival at life's extremes: from psychrophile to hyperthermophile. Eur. J. Biochem. 269, 6250-6260
Smalås, A. O., Leiros, H. K., Os, V. and Willassen, N. P. (2000) Cold adapted enzymes. Biotechnol. Annu. Rev. 6, 1-57
Gianese, G., Bossa, F. and Pascarella, S. (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47, 236-249
D'Amico, S., Marx, J. C., Gerday, C. and Feller, G. (2003) Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278, 7891-7896
Collins, T., Meuwis, M. A., Gerday, C. and Feller, G. (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328, 419-428
Georlette, D., Damien, B., Blaise, V., Depiereux, E., Uversky, V. N., Gerday, C. and Feller, G. (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J. Biol. Chem. 278, 37015-37023
Tehei, M., Franzetti, B., Madern, D., Ginzburg, M., Ginzburg, B. Z., Giudici-Orticoni, M. I., Bruschi, M. and Zaccai, G. (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep. 5, 66-70
Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, Jr, R. C. and Warren, R. A. (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303-315
Black, G. W., Rixon, J. E., Clarke, J. H., Hazlewood, G. P., Ferreira, L. M., Bolam, D. N. and Gilbert, H. J. (1997) Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J. Biotechnol. 57, 59-69
Kvansakul, M., Adams, J. C. and Hohenester, E. (2004) Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J. 23, 1223-1233