The development of knowledge regarding the characteristics of the proteose peptone fraction of milk: Techno-functional and biological properties. A review
[en] The total proteose-peptone fraction (TPP) is defined as a heat-stable soluble fraction of milk, representing about 10% of the whey protein. TPP is divided into two classes according to its origin. The first class consists of proteolysis fragments of the β-casein from the N-terminal region. These are non-hydrophobic fractions, which are the highly soluble β-CN-5P (f1-105/107); β-CN-4P (f1-28) and β-CN-1P (f29-105/107) respectively called PP5 (14.3 kDa), PP8S (9.9 kDa), and PP8F (4 kDa). The second class includes the hydrophobic fractions of glycoproteins, whose major constituents are a glycoprotein LP28, the highly hydrophobic glycoprotein LP18 and a hydrophobic peptide with apparent Mr, respectively 28 kDa, 18 kDa and 11 kDa. TPP has numerous interesting characteristics such as techno-functional properties (emulsifying and foaming actions) and biological properties (lipolysis inhibition and antimicrobial activities), making TPP usable as a potential functional ingredient for industry. In addition, these functional properties are partly governed by the major components including glycoproteins, such as LP28, due to their hydrophobic nature.
Blecker, Christophe ; Université de Liège - ULiège > Chimie et bio-industries > Science des alim. et formul.
Language :
English
Title :
The development of knowledge regarding the characteristics of the proteose peptone fraction of milk: Techno-functional and biological properties. A review
Alternative titles :
[fr] Évolution des connaissances sur les fonctionnalités de la fraction protéose-peptone du lait: Propriétés techno-fonctionnelles et biologiques (synthèse bibliographique)
Publication date :
2013
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Andrews A.T. & Alichanidis E., 1983. Proteolysis of caseins and the proteose-peptone fraction of bovine milk. J. Dairy Res., 50, 275-290.
Andrews A.T. et al., 2006. β-CN-5P and β-CN-4P component of bovine milk proteose-peptone: large preparation and influence on the growth of cariogenic microorganisms. Food Chem., 96, 234-241.
Aschaffenburg R., 1946. Surface activity and proteins of milk. J. Dairy Res., 50, 316-329.
Campagna S. et al., 1998. Conformational studies of a synthetic peptide from the putative lipid-binding domain of bovine milk component PP3. J. Dairy Sci., 81, 3139-3148.
Campagna S. et al., 2004. Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose-peptone. J. Dairy Sci., 87, 1621-1626.
Corradini C. & Innocente N., 1994. Influenza della frazione dei proteoso-peptoni sulla formazione della schiuma del latte. Sci. Tecn. Lattiero-Casearia, 45(2), 107-113.
Courthaudon J.L. et al., 1995. Surface activity and competitive adsorption of milk component 3 and porcine pancreatic lipase at the dodecane-water interface. In: Dickinson E. & Lorient D., eds. Food macromolecules and colloid. Cambridge, UK: Royal Society of Chemistry, 58-70.
Danthine S., Blecker C. & Deroanne C., 2004. Lipolysis inhibition by proteose-peptone: an interfacial study. In: Proceedings of the Be PCIS seminar: Surfactants self assembly and surfactant at interfaces, 11 February 2004, Gembloux, Belgium.
Egito A.S. et al., 2002. Separation and characterization of mare's milk αs1-, β-,-caseins, γ-casein-like, and proteose-peptone component 5-like peptides. J. Dairy Sci., 85, 697-706.
Eigel W.N. & Keeman T.W., 1979. Identification of proteose-peptone component 8-slow as a plasmin-derived fragment of bovine β-casein. Int. J. Biochem., 10, 529-535.
Eigel W.N. et al., 1984. Nomenclature of proteins of cow's milk: fifth revision. J. Dairy Sci., 67, 1599-1631.
Etienne L., Girardet J.M. & Linden G., 1994. Growth promotion of Bifidobacterium animalis by bovine milk proteose-peptone. Lait, 74, 313-323.
Girardet J.M., 1992. Le composant PP3 des protéose-peptones du lait bovin: obtention, origine, étude de sa partie glycannique, rôle dans la lipolyse. Thèse de doctorat: Université de Nancy I (France).
Girardet J.M. et al., 1993. Study of mechanism of lipolysis inhibition by bovine milk proteose-peptone component 3. J. Dairy Sci., 76, 2156-2163.
Girardet J.M. et al., 1995. Structure of glycoproteins isolated from bovine milk component PP3. Eur. J. Biochem., 234, 939-946.
Girardet J.M. & Linden G., 1996. PP3 component of bovine milk: a phosphorylated whey glycoprotein. J. Dairy Res., 63, 333-350.
Grenby T.H., Andrews A.T., Mistry M. & Williams R.J.H., 2001. Dental caries-protective agents in milk and milk products: investigations in vitro. J. Dent., 29, 83-92.
Inagaki M. et al., 2010a. The multiplicity of n-glycan structures of bovine milk 18 k Da lactophorin (milk gly CAM-1). Biosci. Biotechnol. Biochem., 74(2), 447-450.
Inagaki M. et al., 2010b. The bovine lactophorin C-terminale fragment and PAS6/7 were both potent in the inhibition of human rotavirus replication in cultured epithelial cells and the prevention of experimental gastroenteritis. Biosci. Biotechnol. Biochem., 74(7), 1386-1390.
Innocente N., Corradini C., Blecker C. & Paquot M., 1998a. Dynamic surface properties of proteose-peptone fraction of bovine milk. J. Dairy Sci., 81, 1833-1839.
Innocente N., Corradini C., Blecker C. & Paquot M., 1998b. Emulsifying properties of the total fraction and hydrophobic fraction of bovine milk proteose-peptone. Int. Dairy J., 8, 981-985.
Innocente N., Comparin C. & Corradini C., 2002. Proteose-peptone whey fraction as emulsifier in ice-cream preparation. Int. Dairy J., 12, 69-74.
Innocente N., Biasutti M. & Blecker C., 2011a. HPLC profile and dynamic properties of the proteose-peptone fraction from bovine milk and whey protein concentrate. Int. Dairy J., 21, 222-228.
Innocente N., Marchesini G. & Biasutti M., 2011b. Feasibility of the SPME method for the determination of the aroma retention. Food Chem., 124, 1249-1257.
Johnsen L.B., Sørensen E.S., Petersen T.E. & Berglund L., 1995. Characterization of a bovine mammary gland PP3 cDNA reveals homology with mouse and rat adhesion molecule Gly CAM-1. Biochim. Biophys. Acta, 1620, 171-182.
Jouenne E. & Crouzet J., 2000. Effect of pH on retention of aroma compounds by β-lactoglobulin. J. Agric. Food. Chem., 48, 1273-1277.
Kanno C., 1989. Purification and separation of multiple forms of lactophorin from bovine milk whey and their immunological and electrophoresis properties. J. Dairy Sci., 79, 883-891.
Larsen B.L., Wedholm-Pallas A., Lindmark-Mansson H. & Andren A., 2010. Different proteomic profiles of sweet whey and rennet casein obtained after preparation from raw versus heat-treated skimmed milk. Dairy Sci. Techn., 90, 641-656.
Mati A., Girardet J.M., Xenakis D. & Linden G., 1991. Isolement et caractérisation de la fraction hydrophobe des protéose-peptones des laits bovin, ovin et caprin. Lait, 71, 259-273.
Meisel H., 2004. Multifunctional peptides encrypted in milk proteins. Bio Factors, 21, 55-61.
Merin U., Fleminger G. & Komanovsky J., 2008. Subclinical udder infection with Streptococcus dysgalactiae impairs milk coagulation proprerties: the emerging role of proteose-peptone. Dairy Sci. Techn., 88, 407-419.
Nejjar J., Pâquet D. & Linden G., 1990. The PP3 component of the proteose-peptone. Extraction from unheated skim milk. Milchwissenschaft, 45, 84-87.
Osborne T.B. & Wakeman A.J., 1918. The protein of cow's milk. J. Biol. Chem., 33, 7-17.
Pâquet D., 1989. Revue bibliographique: la fraction protéose-peptone du lait. Lait, 69, 1-21.
Pâquet D., Nejjar Y. & Linden G., 1988. Study of a hydrophobic protein fraction isolated from milk proteose-peptone. J. Dairy Sci., 71, 1464-1471.
Park T.J., Kim J.S., Choi S.S. & Kim Y., 2009. Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expression Purif., 65(1), 23-29.
Pearce K.N. & Kinsella J.E., 1978. Emulsifying properties of proteins: evaluation of turbidimetric technique. J. Agric. Food Chem., 26, 716-723.
Pedersen L.R.L. et al., 2012. PP3 forms stable tetrameric structures through hydrophobic interactions via the C-terminal amphipathic helix and undergoes reversible thermal dissociation and denaturation. FEBS J., 279, 336-347.
Rowland S.J., 1938. The precipitation of the proteins in milk. I. Casein. II. Total proteins. III. Globulin. IV. Albumin and Proteose-peptone. J. Dairy Res., 9, 30-41.
Sheng-Hua H. et al., 2012. Effects of proteose-peptone fractions from yak milk on lipoprotein lipase lipolysis. Int. J. Dairy Technol., 65(1), 32-37.
Shimizu M., Yamauchi K. & Saito M., 1989. Emulsifying properties of the proteose-peptone fraction obtained from bovine milk. Milchwissenschaft, 44(8), 497-500.
Sørensen E.S. & Petersen T.E., 1993. Purification and characterization of three proteins isolated from the proteose-peptone fraction of bovine milk. J. Dairy Res., 60, 189-192.
Sørensen E.S., Rasmussen L.K., Moller L. & Petersen T.E., 1997. The localization and multimeric nature of component PP3 in bovine milk: purification and characterization of PP3 from caprine and ovine milks. J. Dairy Sci., 80, 3176-3181.
Swaisgood H.E., 1993. Symposium: genetic perspectives on milk protein: comparative studies and nommenclature. J. Dairy Sci., 76(10), 3054-3061.
Tornberg E., 1978. The application of the drop volume technique to measurements of the adsorption of proteins at interfaces. J. Colloid Interface Sci., 64(3), 391-402.
Vanderghem C., Danthine S., Blecker C. & Deroanne C., 2007. Effect of proteose-peptone addition on some physcio-chemical characteristics of recombined dairy creams. Int. Dairy J., 17, 889-895.
Weinstein B.R., Duncan C.W. & Trout G.M., 1951a. The solar activated flavor of homogenized milk. IV. Isolation and characterization of a whey constituent capable of producing the solar-activated flavour. J. Dairy Sci., 34, 570-576.
Zhu H. & Damodaran S., 1994. Proteose-peptone and physical factors affect foaming properties of whey protein isolate. J. Food Sci., 59(3), 554-560.