[en] Pd/SiO2, Ag/SiO2 and CU/SiO2 xerogel catalysts have been synthesized by cogelation of tetraethoxysilane (TEOS) and chelates of Pd, Ag and Cu with 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS). The resulting materials are composed of completely accessible metallic crystallites with a diameter of about 3 nm, located inside silica particles exhibiting a monodisperse microporous distribution centered on a pore width of about 0.8 nm. Voids between silica particles and between aggregates of silica particles constitute the material meso- and macroporous texture. The EDAS/TEOS ratio is the main operating variable to tailor the material morphology. When the EDAS/TEOS ratio decreases, metallic particle size decreases, whereas silica particle size increases. Thus the meso- and macropores between silica particles are larger. So the total pore volume can reach 5 cm(3)/g when the EDAS/TEOS ratio decreases. The remarkable morphology of these materials can be explained by the rule in which the EDAS metal complex acts as a nucleation agent in the formation of silica particles. A nucleation mechanism by EDAS-metal complex based on mass equations and the nuclei formation kinetics allows fitting the entire results. (C) 2004 Elsevier B.V. All rights reserved.
Disciplines :
Chemical engineering Materials science & engineering
Author, co-author :
Lambert, Stéphanie ; Université de Liège - ULiège > Département de chimie appliquée > Génie Chimique - Chimie physique appliquée
Alié, Christelle ; Université de Liège - ULiège > Département de Chimie appliquée > Génie chimique - Chimie physique appliquée
Pirard, Jean-Paul ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Heinrichs, Benoît ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Language :
English
Title :
Study of textural properties and nucleation phenomenon in Pd/SiO2, Ag/SiO2 and Cu/SiO2 cogelled xerogel catalysts
B. Breitscheidel, J. Zieder, U. Schubert, Chem. Mater. 3 (1991) 559.
U. Schubert, New J. Chem. 18 (1994) 1049.
W. Mörke, R. Lamber, U. Schubert, B. Breitscheidel, Chem. Mater. 6 (1994) 1659.
A. Kaiser, C. Görsmann, U. Schubert, J. Sol-Gel Sci. Technol. 8 (1997) 795.
B. Heinrichs, F. Noville, J.-P. Pirard, J. Catal. 170 (1997) 366.
B. Heinrichs, P. Delhez, J.-P. Schoebrechts, J.-P. Pirard, J. Catal. 172 (1997) 322.
C. Alié, R. Pirard, A.J. Lecloux, J.-P. Pirard, J. Non-Cryst. Solids 246 (1999) 216.
C. Alié, R. Pirard, A.J. Lecloux, J.-P. Pirard, J. Non-Cryst. Solids 285 (2001) 135.
C. Alié, F. Ferauche, R. Pirard, A.J. Lecloux, J.-P. Pirard, J. Non-Cryst. Solids 289 (2001) 88.
C. Alié, J.-P. Pirard, J. Non-Cryst. Solids 320 (2003) 21.
C. Alié, R. Pirard, J.-P. Pirard, J. Non-Cryst. Solids 320 (2003) 31.
S. Lambert, C. Cellier, P. Grange, J.-P. Pirard, B. Heinrichs, J. Catal. 221 (2004) 335.
C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic, San Diego, 1990.
A.J. Lecloux, in: J.R. Anderson, M. Boudart (Eds.), Catalysis: Science and Technology, vol. 2, Springer, Berlin, 1981, p. 171.
R. Pirard, S. Blacher, F. Brouers, J.-P. Pirard, J. Mater. Res. 10 (1995) 2114.
J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66 (1994) 1739.
M. Yamane, in: L.C. Klein (Ed.), Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, Noyes Publications, Park Ridge, NJ, 1988, p. 200.
L. Duffours, T. Woignier, J. Phalippou, J. Non-Cryst. Solids 194 (1996) 283.
J.E. Benson, H.S. Hwang, M. Boudart, J. Catal. 30 (1973) 146.
A.J. Lecloux, J. Bronckart, F. Noville, C. Dodet, P. Marchot, J.-P. Pirard, Colloids Surf. 19 (1986) 359.
G. Bergeret, P. Gallezot, in: G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, vol. 2, Wiley-VCH, Weinheim, 1997, p. 439.