[en] While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform.
Research Center/Unit :
CART - Centre Interfacultaire d'Analyse des Résidus en Traces - ULiège Giga-Systems Biology and Chemical Biology - ULiège
Disciplines :
Chemistry Life sciences: Multidisciplinary, general & others
Greisch, Jean françois; Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Jaeger, M; Institute of Applied Physics, University of Bern, Bern, Switzerland
Frenz, Martin; Institute of Applied Physics, University of Bern, Bern, Switzerland
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > GIGA-R : Laboratoire de spectrométrie de masse (L.S.M.)
De Pauw-Gillet, Marie-Claire ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie - Cytologie
Language :
English
Title :
Anti-PSMA antibody-coupled gold nanorods detection by optical and electron microscopies
Publication date :
2013
Journal title :
Micron
ISSN :
0968-4328
eISSN :
1878-4291
Publisher :
Pergamon Press - An Imprint of Elsevier Science
Issue :
50
Pages :
68-74
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Development of a new integrated biosensor system for an accurate diagnosis of prostate cancer using optoacoustic detection
Funders :
DG RDT - Commission Européenne. Direction Générale de la Recherche et de l'Innovation FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Agarwal A., Huang S.W., O'Donnell M., Day K.C., Day M., Kotov N., Ashkenazi S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Journal of Applied Physics 2007, 102:64701-64704.
Allen T.M. Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer 2002, 2:750-763.
Bryant G.W., Garcia de Abajo F.J., Aizpurua J. Mapping the plasmon resonances of metallic nanoantennas. Nano Letters 2008, 8:631-636.
Chang S.-S., Shih C.-W., Chen C.-D., Lai W.-C., Wang C.R.C. The shape transition of gold nanorods. Langmuir 1998, 15:701-709.
Copland J.A., Eghtedari M., Popov V.L., Kotov N., Mamedova N., Motamedi M., Oraevsky A.A. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Molecular Imaging & Biology 2004, 6:341-349.
Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release 2010, 148:135-146.
El-Sayed I.H., Huang X., El-Sayed M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters 2005, 5:829-834.
Fendler J.H. Book review: metal nanoparticles. Advanced Materials 2002, 14:1006.
Fleron M., Greffe Y., Musmeci D., Massart A.C., Hennequiere V., Mazzucchelli G., Waltregny D., De Pauw-Gillet M.C., Castronovo V., De Pauw E., Turtoi A. Novel post-digest isotope coded protein labeling method for phospho- and glycoproteome analysis. Journal of Proteomics 2010, 73:1986-2005.
Ghosh S.K., Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chemical Reviews 2007, 107:4797-4862.
Harris J.M., Chess R.B. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery 2003, 2:214-221.
Huang W., El-Sayed M.A. Photothermally excited coherent lattice phonon oscillations in plasmonic nanoparticles. European Physical Journal - Special Topics 2008, 153:325-333.
Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007, 2:681-693.
Jaeger M., Frenz M., Schweizer D. Iterative reconstruction algorithm for reduction of echo background in optoacoustic images. SPIE Proceedings 2008, 6856. 68561C.68561-68561C.68515.
Jaeger M., Preisser S., Kitz M., Ferrara D., Senegas S., Schweizer D., Frenz M. Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies. Physics in Medicine and Biology 2011, 56:5889-5901.
Jain P.K., Huang X., El-Sayed I.H., El-Sayed M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts on Chemical Research 2008, 41:1578-1586.
Jain P.K., Lee K.S., El-Sayed I.H., El-Sayed M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B 2006, 110:7238-7248.
Jana N.R., Gearheart L., Murphy C.J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials 2001, 13:1389-1393.
Jana N.R., Gearheart L., Murphy C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B 2001, 105:4065-4067.
Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2002, 107:668-677.
Kreibig U., Vollmer M. Theoretical Considerations, Optical Properties of Metal Clusters 1995, 13-201. Springer, Berlin, Heidelberg.
Loo C., Lin A., Hirsch L., Lee M.H., Barton J., Halas N., West J., Drezek R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment 2004, 3:33-40.
Mallidi S., Larson T., Tam J., Joshi P.P., Karpiouk A., Sokolov K., Emelianov S. Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Letters 2009, 9:2825-2831.
Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Research 1986, 46:6387-6392.
Mueller-Klieser W.F., Sutherland R.M. Oxygen tensions in multicell spheroids of two cell lines. British Journal of Cancer 1982, 45:256-264.
Murphy C.J., Gole A.M., Stone J.W., Sisco P.N., Alkilany A.M., Goldsmith E.C., Baxter S.C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of Chemical Research 2008, 41:1721-1730.
Oraevsky A.A., Esenaliev R.O., Jacques S.L., Tittel F.K. Laser optoacoustic tomography for medical diagnostics: principles. SPIE Proceedings 1996, 2676:22-31.
Rajasekaran A.K., Anilkumar G., Christiansen J.J. Is prostate-specific membrane antigen a multifunctional protein?. American Journal of Physiology - Cell Physiology 2005, 288:C975-C981.
Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. CA: A Cancer Journal for Clinicians 2013, 63:11-30.
Sweat S.D., Pacelli A., Murphy G.P., Bostwick D.G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998, 52:637-640.
Trover J.K., Beckett M.L., Wright G.L. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. International Journal of Cancer 1995, 62:552-558.
Troyer J.K., Beckett M.L., Wright G.L. Location of prostate-specific membrane antigen in the LNCaP prostate carcinoma cell line. The Prostate 1997, 30:232-242.