power system dynamic simulation; Schur complement; time-domain simulation; DAE systems
Abstract :
[en] This paper proposes a Schur complement-based Domain Decomposition Method to accelerate the time-domain simulation of large, non-linear and stiff Differential and Algebraic Equation systems stemming from power system dynamic studies. The proposed algorithm employs a star-shaped decomposition scheme and exploits the locality and sparsity of the system. The simulation is accelerated by the use of quasi-Newton schemes and parallel programming techniques. The proposed algorithm is implemented using the shared-memory parallel programming model and tested on a large-scale, realistic power system model showing significant speedup.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Aristidou, Petros ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Fabozzi, Davide; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Van Cutsem, Thierry ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
A Schur Complement Method for DAE Systems in Power System Dynamic Simulations
Publication date :
2014
Main work title :
Domain Decomposition Methods in Science and Engineering XXI
Editor :
Erhel, Jocelyne
Gander, Martin
Halpern, Laurence
Pichot, Géraldine
Sassi, Taoufik
Widlund, Olof
Publisher :
Springer International Publishing
Collection name :
Lecture Notes in Computational Science and Engineering Volume 98, 2014
Crow, M., Ilic, M., White, J., Convergence properties of the waveform relaxation method as applied to electric power systems (1989) IEEE International Symposium on Circuits and Systems, 3, pp. 1863-1866
Tu/E: D4.1: Algorithmic Requirements for Simulation of Large Network Extreme Scenarios, , http://www.fp7-pegase.eu/, CRSA, RTE, TE, Technical report
Dennis, J., Walker, H., Inaccuracy in quasi-Newton methods: Local improvement theorems (1984) Math. Program. Oberwolfach II, 22, pp. 70-85
Fabozzi, D., (2012) Decomposition, Localization and Time-Averaging Approaches in Large-Scale Power System Dynamic Simulation, , Ph.D. thesis, University of Liège
Guibert, D., Tromeur-Dervout, D., A Schur complement method for DAE/ODE systems in multi-domain mechanical design (2008) Domain Decomposition Methods in Science and Engineering XVII, pp. 535-541. , Springer Berlin Heidelberg
(2011) HSL: A Collection of Fortran Codes for Large Scale Scientific Computation, , http://www.hsl.rl.ac.uk
Ilic’-Spong, M., Crow, M.L., Pai, M.A., Transient stability simulation by waveform relaxation methods (1987) IEEE Trans. Power Syst, 2 (4), pp. 943-949
Jackiewicz, Z., Kwapisz, M., Convergence of waveform relaxation methods for differentialalgebraic systems (1996) SIAM J. Numer. Anal, 33 (6), pp. 2303-2317
Kron, G., (1963) Diakoptics: The Piecewise Solution of Large-Scale Systems, , MacDonald, London
Kundur, P., (1994) Power System Stability and Control, , McGraw-Hill, New York
La Scala, M., Bose, A., Tylavsky, D., Chai, J., A highly parallel method for transient stability analysis (1990) IEEE Trans. Power Syst, 5 (4), pp. 1439-1446
Ortega, J., Rheinboldt, W., (1987) Iterative Solution of Nonlinear Equations in Several Variables, , Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia
Saad, Y., (2003) Iterative Methods for Sparse Linear Systems, , 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia