[en] There is a lot of uncertainty in the amount and spatial variations of above-ground biomass in Africa, partly because very few allometric equations are available. The aim of this study was to assess the validity of using pan-tropical multispecies allometric equations developed by Chave et al. (2005) for estimating the above-ground biomass of trees in Central Africa and/or to develop site-specific equations. The study was conducted in lowland tropical forests of South-eastern Cameroon, at the edge between evergreen and semi-evergreen forests. Data of above-ground woody biomass were obtained from destructive sampling of 138 trees belonging to 47 taxa across a huge range of diameter (5.30–192.50 cm) and wood specific gravity (0.284–1.152 g cm 3). A set of local site-specific multi- and single-species models relating above-ground biomass to tree diameter and wood specific gravity were fitted to the data. The best model was selected using information criterion. Both tree diameter and wood specific gravity were important predictor to consider for the estimation of above-ground biomass at tree scale. Single-species models were not necessarily better than multi-species models including wood specific gravity as a predictor. The best local multi-species model had the same structure and parameters as the pan-tropical equation developed by Chave et al. (2005) for moist forests. The estimates from the pan-tropical multi-species equation were nearly as good as those of the local multi-species equation. Using wood specific gravity from the global data base only slightly increased the estimation errors, because for the study taxa wood specific gravity was highly correlated to wood specific gravity from the global data base. In this study, we showed that the pantropical multi-species allometric equation developped for moist forests can be used to produce accurate estimates of biomass and carbon stocks from diameter measurement in forest inventory and wood specific gravity from global data base at species level. These findings are especially timely given the urgent need to quantify biomass and carbon stocks in the tropics, and given the spatial extent of moist forests in Central Africa.
Aalde H., Gonzalez P., Gytarsky M., Krug T., Kurz W.A., Ogle S., Raison J., Schoene D., Ravindranath N.H., Elhassan N.G. Forest land. IPCC Guidelines for National Greenhouse Gas Inventories 2006, IPCC.
Alvarez E., Duque A., Saldarriaga J., Cabrera K., De las Salas G., Del Valle I., Lema A., Moreno F., Orrego S., Rodríguez L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecol. Manage. 2012, 267:297.
Baccini A., Laporte N., Goetz S., Sun M., Dong H. A first map of tropical Africa's above-ground biomass derived from satellite imagery. Environ. Res. Lett. 2008, 3:045011.
Baker T.R., Phillips O.L., Malhi Y., Almeida S., Arroyo L., Di Fiore A., Erwin T., Killeen T.J., Laurance S.G., Laurance W.F. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol. 2004, 10:545-562.
Banin L., Feldpausch T.R., Phillips O.L., Baker T.R., Lloyd J., Affum-Baffoe K., Arets E.J.M.M., Berry N.J., Bradford M., Brienen R.J.W., Davies S., Drescher M., Higuchi N., Hilbert D.W., Hladik A., Iida Y., Salim K.A., Kassim A.R., King D.A., Lopez-Gonzalez G., Metcalfe D., Nilus R., Peh K.S.-H., Reitsma J.M., Sonké B., Taedoumg H., Tan S., White L., Wöll H., Lewis S.L. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecol. Biogeogr. 2012, 21:1179-1190.
Baskerville G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. Forest Res. 1972, 2:49-53.
Basuki T.M., Van Laake P.E., Skidmore A.K., Hussin Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecol. Manage. 2009, 257:1684-1694.
Brown S., Gillespie A.J.R., Lugo A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Sci. 1989, 35:881-902.
Cailliez F. Volume estimation. Forest Volume Estimation and Yield Prediction 1980, FAO.
Chave J., Condit R., Aguilar S., Hernandez A., Lao S., Perez R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. London Ser. B: Biol. Sci. 2004, 359:409-420.
Chave J., Andalo C., Brown S., Cairns M., Chambers J., Eamus D., Fölster H., Fromard F., Higuchi N., Kira T., others Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145:87-99.
Cramer W., Bondeau A., Schaphoff S., Lucht W., Smith B., Sitch S. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. London Ser. B: Biol. Sci. 2004, 359:331-343.
Deans J.D., Moran J., Grace J. Biomass relationships for tree species in regenerating semi-deciduous tropical moist forest in Cameroon. Forest Ecol. Manage. 1996, 88:215-225.
Djomo A.N., Ibrahima A., Saborowski J., Gravenhorst G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecol. Manage. 2010, 260:1873-1885.
Ebuy J., Lokombe Dimandja J., Ponette Q., Sonwa D., Picard N. Allometric equation for predicting aboveground biomass of three tree species. J. Trop. Forest Sci. 2011, 23:125-132.
Feldpausch T.R., Banin L., Phillips O.L., Baker T.R., Lewis S.L., Quesada C.A., Affum-Baffoe K., Arets E., Berry N.J., Bird M. Height-diameter allometry of tropical forest trees. Biogeosciences 2011, 8:1081-1106.
Feldpausch T.R., Lloyd J., Lewis S.L., Brienen R.J.W., Gloor E., Monteagudo Mendoza A., Lopez-Gonzalez G., Banin L., Abu Salim K., Affum-Baffoe K. Tree height integrated into pan-tropical forest biomass estimates. Biogeosci. Discuss. 2012, 9:2567-2622.
Gibbs H.K., Brown S., Niles J.O., Foley J.A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2007, 2:045023.
Gourlet-Fleury S., Rossi V., Réjou-Méchain M., Freycon V., Fayolle A., Saint-André L., Cornu G., Gérard J., Sarrailh J.M., Flores O., Baya F., Billand A., Fauvet N., Gally M., Henry M., Hubert D., Pasquier A., Picard N. Environmental filtering of dense-wooded species controls aboveground biomass stored on nutrient-poor soils in African moist forests. J. Ecol. 2011, 99:981-990.
Henry M., Besnard A., Asante W.A., Eshun J., Adu-Bredu S., Valentini R., Bernoux M., Saint-Andre L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecol. Manage. 2010, 260:1375-1388.
Henry M., Picard N., Trotta C., Manlay R.J., Valentini R., Bernoux M., Saint-André L. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fennica 2011, 45:477-569.
Letouzey, R., 1985. Notice de la carte phytogéographique du Cameroun au 1:500'000. Institut de la carte internationale de la végétation. Toulouse, France.
Lewis S.L., Lopez-Gonzalez G., Sonké B., Affum-Baffoe K., Baker T.R., Ojo L.O., Phillips O.L., Reitsma J.M., White L., Comiskey J.A., others Increasing carbon storage in intact African tropical forests. Nature 2009, 457:1003-1006.
Malhi Y., Grace J. Tropical forests and atmospheric carbon dioxide. Trends Ecol. Evol. 2000, 15:332-337.
Maniatis D., Malhi Y., Saint André L., Mollicone D., Barbier N., Saatchi S. Evaluating the Potential of Commercial Forest Inventory Data to Report on Forest Carbon Stock and Forest Carbon Stock Changes for REDD+ under the UNFCCC. Int. J. Forestry Res. 2011.
Maniatis D., Saint André L., Temmerman M., Malhi Y., Beeckman H. The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement. iForest-Biogeosci. Forestry 2011, 4:150.
Mitchard E., Saatchi S., Lewis S., Feldpausch T., Gerard F., Woodhouse I., Meir P. Comment on "A first map of tropical Africa's" above-ground biomass derived from satellite imagery'. Environ. Res. Lett. 2011, 6:049001.
Molto Q., Rossi V., Blanc L. Error propagation in biomass estimation in tropical forests 2012, Methods Ecol. Evol.
Nogueira Lima A.J., Suwa R., de Mello Pires., Ribeiro G.H., Kajimoto T., Dos Santos J., Pereira da Silva R., Sampaio de Souza C.A., De Barros P.C., Noguchi H., Ishizuka M., Higuchi N. Allometric models for estimating above-and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecol. Manage. 2012, 277:163-172.
R Development Core Team, 2011. R: A language and environment for statistical computing. [WWW Document]. <. http://www.R-project.org.
Saint-André L., M'Bou A.T., Mabiala A., Mouvondy W., Jourdan C., Roupsard O., Deleporte P., Hamel O., Nouvellon Y. Age-related equations for above-and below-ground biomass of a Eucalyptus hybrid in Congo. Forest Ecol. Manage. 2005, 205:199-214.
Slik J.W.F. Short communication estimating species-specific wood density from the genus average in Indonesian trees. J. Trop. Ecol. 2006, 22:481-482.
Sprugel D.G. Correcting for bias in log-transformed allometric equations. Ecology 1983, 64:209-210.
Swenson N.G., Enquist B.J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 2007, 94:451.
Van Breugel M., Ransijn J., Craven D., Bongers F., Hall J.S. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. Forest Ecol. Manage. 2011.
Vieilledent G., Vaudry R., Andriamanohisoa S.F., Rakotonarivo S.O., Randrianasolo Z.H., Razafindrabe H.N., Bidaud Rakotoarivony C., Ebeling J., Rasamoelina M. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol. Appl. 2012, 22:572-583.
Wharton, E.H., Cunia, T., 1987. Estimating tree biomass regressions and their error, in: Notes. In: Presented at the proceedings of the workshop on tree biomass regression functions and their contribution to the error-Part A.
White, F., 1983. The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa (Natural Resources Research 20).
Williamson G.B., Wiemann M.C. Measuring wood specific gravity correctly. Am. J. Bot. 2010, 97:519-524.
Woodcock D., Shier A. Wood specific gravity and its radial variations: the many ways to make a tree. Trees-Struct. Funct. 2002, 16:437-443.
Zhang Q., Justice C.O., Desanker P.V. Impacts of simulated shifting cultivation on deforestation and the carbon stocks of the forests of Central Africa. Agric., Ecosyst. Environ. 2002, 90:203-209.