[en] The use of normal modes of vibration in the analysis of structures with non-proportional damping reduces the number of governing equations, but does not decouple them. A common practice consists in decoupling the equations by disregarding the off-diagonal elements of the modal damping matrix. This paper proposes a method based on the asymptotic expansion of the modal transfer matrix to take into account the modal coupling in Gaussian spectral analysis. First, the mathematical background is introduced, then the relevance of the method is illustrated within the context of the analysis of a large and real structure submitted to wind loadings.
Disciplines :
Ingénierie civile
Auteur, co-auteur :
Canor, Thomas ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Blaise, Nicolas ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Denoël, Vincent ; Université de Liège - ULiège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil
Langue du document :
Anglais
Titre :
Uncoupled spectral analysis with non-proportional damping
Date de publication/diffusion :
07 juillet 2013
Nom de la manifestation :
European-African Conference on Wind Engineering
Date de la manifestation :
du 7 juillet 2013 au 11 juillet 2013
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the European-African Conference on Wind Engineering
Canor, T., Blaise, N., & Denoël, V. 2012. Efficient uncoupled stochastic analysis with nonproportional damping. Journal of Sound and Vibration, http://dx.doi.org/10.1016/j.jsv. 2012.07.019.
Denoël, V., & Degée, H. 2009. Asymptotic expansion of slightly coupled modal dynamic transfer functions. Journal of Sound and Vibration, 328, 1-8.
Foss, K. A. 1958. Coordinate which uncouple the equations of motion of damped linear systems. ASME Journal of Applied Mechanics, 25, 361-364.
Morzfeld, M., Ajavakom, N., & Ma, F. 2009. Diagonal dominance of damping and the decoupling approximation in linear vibratory systems. Journal of Sound and Vibration, 320(1-2), 406-420.
Rayleigh, J. W. S. 1945. The Theory of Sound. Vol. 1. New-York: Dover Publication.
Simiu, E., & Scanlan, R. H. 1978. Wind Effects on Structures. 1st edn. New-York: J. Wiley and Sons.