Apprentissage par renforcement; Optimisation non-linéaire
Abstract :
[fr] Cet article aborde le problème de généralisation minmax dans le cadre de l'apprentissage par renforcement batch et déterministe. Le problème a été originellement introduit par [Fonteneau, 2011], et il a déjà été montré qu'il est NP-dur. Deux schémas de relaxation pour le cas deux étapes ont été présentés aux JFPDA'12, et ce papier présente une généralisation de ces schémas au cas T étapes. Le premier schéma fonctionne en éliminant des contraintes afin d'obtenir un problème soluble en temps polynomial. Le deuxième schéma est une relaxation lagrangienne conduisant également à un problème soluble en temps polynomial. On montre théoriquement que ces deux schémas permettent d'obtenir de meilleurs résultats que ceux proposés par [Fonteneau, 2011].
Disciplines :
Computer science
Author, co-author :
Fonteneau, Raphaël ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Ernst, Damien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Boigelot, Bernard ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique
Louveaux, Quentin ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Système et modélisation : Optimisation discrète
Language :
French
Title :
Généralisation Min Max pour l'Apprentissage par Renforcement Batch et Déterministe : Relaxations pour le Cas Général T Etapes
Publication date :
2013
Event name :
8èmes Journées Francophones de Planification, Décision et Apprentissage pour la conduite de systèmes (JFPDA'13)
Event date :
from 01-07-2013 to 02-07-2013
Main work title :
8èmes Journées Francophones de Planification, Décision et Apprentissage pour la conduite de systèmes (JFPDA'13)