[en] The glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs (MGTs) belong to the GT51 family in the sequence-based classification of GTs. They both possess five conserved motifs and use lipid II precursor (undecaprenyl-pyrophosphate-N-acetylglucosaminyl-N-acetylmuramoyl- pentapeptide) to synthesize the glycan chain of the bacterial wall peptidoglycan. MGTs appear to be dispensable for growth of some bacteria in vitro. However, new evidence shows that they may be essential for the infection process and development of pathogenic bacteria in their hosts. Only a small number of class A PBPs have been characterized so far, and no kinetic data are available on MGTs. In this study, we present the principal enzymatic properties of the Staphylococcus aureus MGT. The enzyme catalyzes glycan chain polymerization with an efficiency of similar to 5,800 M-1 s(-1) and has a pH optimum of 7.5, and its activity requires metal ions with a maximum observed in the presence of Mn2+. The properties of S. aureus MGT are distinct from those of S. aureus PBP2 and Escherichia coli MGT, but they are similar to those of E. coli PBP1b. We examined the role of the conserved Glu100 of S. aureus MGT (equivalent to the proposed catalytic Glu233 of E. coli PBP1b) by site-directed mutagenesis. The Glu100Gln mutation results in a drastic loss of GT activity. This shows that Glu100 is also critical for catalysis in S. aureus MGT and confirms that the conserved glutamate of the first motif EDXXFXX(H/N)X(G/A) is likely the key catalytic residue in the GT51 active site.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Terrak, Mohammed ; Université de Liège - ULiège > Centre d'ingénierie des protéines
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arbeloa, A., H. Segal, J. E. Hugonnet, N. Josseaume, L. Dubost, J. P. Brouard, L. Gutmann, D. Mengin-Lecreulx, and M. Arthur. 2004. Role of class A penicillin-binding proteins in PBP5-mediated beta-lactam resistance in Enterococcus faecalis. J. Bacteriol. 186:1221-1228.
Baizman, E. R., A. A. Branstrom, C. B. Longley, N. Allanson, M. J. Sofia, D. Gange, and R. C. Goldman. 2000. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology 146:3129-3140.
Barrett, D., C. Leimkuhler, L. Chen, D. Walker, D. Kahne, and S. Walker. 2005. Kinetic characterization of the glycosyltransferase module of Staphylococcus aureus PBP2. J. Bacteriol. 187:2215-2217.
Barrett, D. S., L. Chen, N. K. Litterman, and S. Walker. 2004. Expression and characterization of the isolated glycosyltransferase module of Escherichia coli PBP1b. Biochemistry 43:12375-12381.
Canavessi, A. M., J. Harms, N. de Leon Gatti, and G. A. Splitter. 2004. The role of integrase/recombinase XerD and monofunctional biosynthesis peptidoglycan transglycosylase genes in the pathogenicity of Brucella abortus infection in vitro and in vivo. Microb. Pathog. 37:241-251.
Chen, L., D. Walker, B. Sun, Y. Hu, S. Walker, and D. Kahne. 2003. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc. Natl. Acad. Sci. USA 100: 5658-5663.
Coutinho, P. M., E. Deleury, G. J. Davies, and B. Henrissat. 2003. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328:307-317.
Di Berardino, M., A. Dijkstra, D. Stuber, W. Keck, and M. Gubler. 1996. The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan-synthesising enzymes. FEBS Lett. 392:184-188.
Di Guilmi, A. M., A. Dessen, O. Dideberg, and T. Vernet. 2003. The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. J. Bacteriol. 185:4418-4423.
Di Guilmi, A. M., N. Mouz, L. Martin, J. Hoskins, S. R. Jaskunas, O. Dideberg, and T. Vernet. 1999. Glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae is membrane associated. J. Bacteriol. 181:2773-2781.
Goffin, C., and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62:1079-1093.
Hara, H., and H. Suzuki. 1984. A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli. FEBS Lett. 168:155-160.
Harper, M., J. D. Boyce, I. W. Wilkie, and B. Adler. 2003. Signature-tagged mutagenesis of Pasteurella multocida identifies mutants displaying differential virulence characteristics in mice and chickens. Infect. Immun. 71:5440-5446.
Marrec-Fairley, M., A. Piette, X. Gallet, R. Brasseur, H. Hara, C. Fraipont, J. M. Ghuysen, and M. Nguyen-Disteche. 2000. Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol. Microbiol. 37:1019-1031.
Miroux, B., and J. E. Walker. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289-298.
Nakagawa, J., S. Tamaki, S. Tomioka, and M. Matsuhashi. 1984. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J. Biol. Chem. 259:13937-13946.
Pinho, M. G., S. R. Filipe, H. de Lencastre, and A. Tomasz. 2001. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. 3. Bacteriol. 183:6525-6531.
Schiffer, G., and J. V. Holtje. 1999. Cloning and characterization of PBP 1C, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli. J. Biol. Chem. 274:32031-32039.
Schwartz, B., J. A. Markwalder, S. P. Seitz, Y. Wang, and R. L. Stein. 2002. A kinetic characterization of the glycosyltransferase activity of Escherichia coli PBP1b and development of a continuous fluorescence assay. Biochemistry 41:12552-12561.
Terrak, M., T. K. Ghosh, J. van Heijenoort, J. Van Beeumen, M. Lampilas, J. Aszodi, J. A. Ayala, J. M. Ghuysen, and M. Nguyen-Disteche. 1999. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol. 34:350-364.
van Heijenoort, J. 2001. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25R-36R.
van Heijenoort, Y., M. Gomez, M. Derrien, J. Ayala, and J. van Heijenoort. 1992. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J. Bacteriol. 174:3549-3557.
Wang, Q. M., R. B. Peery, R. B. Johnson, W. E. Alborn, W. K. Yeh, and P. L. Skatrud. 2001. Identification and characterization of a monofunctional glycosyltransferase from Staphylococcus aureus. J. Bacteriol. 183:4779-4785.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.