Alihosseini F., Ju K.S., Lango J., Hammock B.D., Sun G. Antibacterial colorants: characterization of prodiginines and their applications on textile materials. Biotechnol. Prog. 2008, 24:742-747.
Ammor M.S. Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J. Fluoresc. 2007, 17:455-459.
Bhatta H., Goldys E.M., Learmonth R.P. Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Appl. Microbiol. Biotechnol. 2006, 71:121-126.
Craig M., Lambert S., Jourdan S., Tenconi E., Colson S., Maciejewska M., Ongena M., Martin J.F., van Wezel G., Rigali S. Unsuspected control of siderophore production by N-acetylglucosamine in streptomycetes. Environ. Microbiol. Rep. 2012, 4:512-521.
de Jong I.P., Claessen D. A sandwich-culture technique for controlling antibiotic production and morphological development in Streptomyces coelicolor. J. Microbiol. Methods 2012, 91:318-320.
Floriano B., Bibb M. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 1996, 21:385-396.
Francisco R., Perez-Tomas R., Gimenez-Bonafe P., Soto-Cerrato V., Gimenez-Xavier P., Ambrosio S. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur. J. Pharmacol. 2007, 572:111-119.
Furstner A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500years. Angew Chem. Int. Ed. Engl. 2003, 42:3582-3603.
Gerber N.N., Lechevalier M.P. Prodiginine (prodigiosin-like) pigments from Streptomyces and other aerobic Actinomycetes. Can. J. Microbiol. 1976, 22:658-667.
Giri A.V., Anandkumar N., Muthukumaran G., Pennathur G. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol. 2004, 4:11.
Granozzi C., Billetta R., Passantino R., Sollazzo M., Puglia A.M. A breakdown in macromolecular synthesis preceding differentiation in Streptomyces coelicolor A3(2). J. Gen. Microbiol. 1990, 136:713-716.
Hempel A.M., Wang S.B., Letek M., Gil J.A., Flardh K. Assemblies of DivIVA mark sites for hyphal branching and can establish new zones of cell wall growth in Streptomyces coelicolor. J. Bacteriol. 2008, 190:7579-7583.
Hempel A.M., Cantlay S., Molle V., Wang S.B., Naldrett M.J., Parker J.L., Richards D.M., Jung Y.G., Buttner M.J., Flardh K. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:E2371-E2379.
Hobbs G., Frazer C.M., Gardner D.C.J., Flett F., Oliver S.G. Pigmented antibiotic production by Streptomyces coelicolor A3(2): kinetics and the influence of nutrients. J. Gen. Microbiol. 1990, 136:2291-2296.
Hopwood D.A. Streptomyces in Nature and Medicine (The Antibiotic Makers) 2007, John Innes Foundation, New York.
Huang J., Lih C.J., Pan K.H., Cohen S.N. Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev. 2001, 15:3183-3192.
Leblanc L., Dufour E. Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiol. Lett. 2002, 211:147-153.
Meschke H., Walter S., Schrempf H. Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana. Environ. Microbiol. 2012, 14:940-952.
Mo S., Sydor P.K., Corre C., Alhamadsheh M.M., Stanley A.E., Haynes S.W., Song L., Reynolds K.A., Challis G.L. Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem. Biol. 2008, 15:137-148.
Narva K.E., Feitelson J.S. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J. Bacteriol. 1990, 172:326-333.
Nguyen K.D., Au-Young S.H., Nodwell J.R. Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid 2007, 58:167-173.
Puglia A.M., Vohradsky J., Thompson C.J. Developmental control of the heat-shock stress regulon in Streptomyces coelicolor. Mol. Microbiol. 1995, 17:737-746.
Rigali S., Nothaft H., Noens E.E., Schlicht M., Colson S., Muller M., et al. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 2006, 61:1237-1251.
Rigali S., Titgemeyer F., Barends S., Mulder S., Thomae A.W., Hopwood D.A., van Wezel G.P. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 2008, 9:670-675.
Roselle D.C., Seaver M., Eversole J.D. Changes in intrinsic fluorescence during the production of viable but nonculturable Escherichia coli. J. Ind. Microbiol. Biotechnol. 1998, 20:265-267.
Rudd B.A., Hopwood D.A. A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster. J. Gen. Microbiol. 1980, 119:333-340.
Siva R., Subha K., Bhakta D., Ghosh A.R., Babu S. Characterization and enhanced production of prodigiosin from the spoiled coconut. Appl. Biochem. Biotechnol. 2012, 166:187-196.
Stankovic N., Radulovic V., Petkovic M., Vuckovic I., Jadranin M., Vasiljevic B., Nikodinovic-Runic J. Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl. Microbiol. Biotechnol. 2012, 96:1217-1231.
Sun J., Kelemen G.H., Fernandez-Abalos J.M., Bibb M.J. Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 1999, 145(Pt 9):2221-2227.
Swiatek M.A., Tenconi E., Rigali S., van Wezel G.P. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J. Bacteriol. 2012, 194:1136-1144.
Takano E., Gramajo H.C., Strauch E., Andres N., White J., Bibb M.J. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 1992, 6:2797-2804.
Tang Y.Z., Dobbs F.C. Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies. Appl. Environ. Microbiol. 2007, 73:2306-2313.
Tenconi E., Jourdan S., Motte P., Virolle M.J., Rigali S. Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner. Antonie Van Leeuwenhoek 2012, 102:425-433.
van Wezel G.P., White J., Hoogvliet G., Bibb M.J. Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans. J. Mol. Microbiol. Biotechnol. 2000, 2:551-556.
Venil C.K., Lakshmanaperumalsamy P. An insightful overview on microbial pigment, prodigiosin. Electron. J. Biol. 2009, 5:49-61.
White J., Bibb M. bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J. Bacteriol. 1997, 179:627-633.
Willemse J., van Wezel G.P. Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization. PLoS One 2009, 4:e4242.
Willemse J., Borst J.W., de Waal E., Bisseling T., van Wezel G.P. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev. 2011, 25:89-99.
Willemse J., Ruban-Osmialowska B., Widdick D., Celler K., Hutchings M.I., van Wezel G.P., Palmer T. Dynamic localization of Tat protein transport machinery components in Streptomyces coelicolor. J. Bacteriol. 2012, 194:6272-6281.
Williamson N.R., Fineran P.C., Leeper F.J., Salmond G.P. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 2006, 4:887-899.