[en] This article describes the features of a quadrilateral thin shell element, based on Marguerre's theory that has ben implemented in the finite element program SAFIR (from the University of Liege.) The element has four nodes (one at each corner) and each node has six degrees of freedom, i.e., three translations and three rotations (the sixth degree of freedom is a true one, which can be assimilated to the in-plane rotation.) This article presents some theoretical developments regarding the element formulation. The algorithm strategies for isotropic material (steel for example) and non-isotropic material 'concrete) and their modifications for elevated temperatures are described. Two verifications examples are presented (the patch test and Lee's frame at elevated temperatures).
Disciplines :
Civil engineering
Author, co-author :
Talamona, Didier; University of Ulster > FireSERT
Franssen, Jean-Marc ; Université de Liège - ULiège > Département Argenco : Secteur SE > Ingénierie du feu
Language :
English
Title :
Nonlinear thin shell finite element for steel and concrete structures subjected to fire: theoretical development
FINELG, Nonlinear Finite Element Analysis Program - User's Manual Version 6.2, February 1984.
P. Jetteur, Non-Linear Shell Elements Based on Marguerre Theory: IREM Internal Report 85/5, Swiss Federal Institute of Technology, Lausanne, Switzerland, December 1985.
P. Jetteur, A Shallow Shell Element with in-Plane Rotational Degrees of Freedom: IREM Internal Report 86/3, Swiss Federal Institute of Technology, Lausanne, Switzerland, March 1986.
P. Jetteur, Improvement of the Quadrangular "JET" Shell Element for a Particular Class of Shell Problems: IREM Internal Report 87/1, Swiss Federal Institute of Technology, Lausanne, Switzerland, February 1987.
S. Jaamei, F. Frey, and P. Jetteur, Elément Fini de Coque Mince Non-Linéaire à Six Degrés de Liberté par Noeud: IREM Internal Report 87/10, Swiss Federal Institute of Technology, Lausanne, Switzerland, November 1987.
D. J. Allman, A Compatible Triangular Element Including Vertex Rotations for Plane Elastic Analysis, Computer Structure, 19, pp. 1-8, 1984.
S. Jaamei, "JET" Thin Shell Finite Element with Drilling Rotations: IREM Internal Report 88/7, Swiss Federal Institute of Technology, Lausanne, Switzerland, July 1988.
S. Idelsohn, Analyses Statique et Dynamique des Coques par la Méthode des Eléments Finis, Ph.D. thesis, Liege, 1974.
J. L. Batoz, K. J. Bathe, and L. W. Ho, A Study of Three Node Triangular Plate Bending Elements, International Journal of Numeral Method Engingeering, 15, pp. 1771-1812, 1980.
J. L. Batoz, An Explicit Formulation for an Efficient Triangular Plate Bending Element, International Journal of Numeral Method Engineering, 18, pp. 1077-1089, 1982.
J. L. Batoz and M. Ben Tahar, Evaluation of a New Quadrangular Thin Plate Bending Element, International Journal of Numeral Method Engingeering, 18, pp. 1655-1677, 1982.
P. Jetteur and F. Frey, A Four Node Marguerre Element for Non-Linear Shell Analysis, Engineering Computations, 3:4, pp. 276-282, 1986.
S. Jaamei, F. Frey, and P. Jetteur, Nonlinear Thin Shell Finite Element with Six Degrees of Freedom per Node, Computer Methods in Applied Mechanics and Engineering, 75:1-3, pp. 251-266, 1989.
N. Carpenter, H. Stolarsky, and T. Belytschko, Flat Triangular Shell Element with Improved Membrane Interpolation, Communications in Applied Numerical Methods, 7:4, pp. 161-168, 1985.
R. Taylor and J. C. Simo, Bending and Membrane Elements for Analysis of Thick and Thin Shell, Proceedings NUMETA 1985 Conference, Swansea, pp. 587-591, 1985.
CEN ENV 1993-1-2, Eurocode 3, Design of Steel Structures, Part 1.2, General Rules, Structural Fire Design, European Committee for Standardization, Belgium, 1995.
CEN ENV 1992-1-2, Eurocode 2, Design of Concrete Structures, Part 1.2, General Rules, Structural Fire Design, European Committee for Standardization, Belgium, 1994.
L. Lim, Membrane Action in Fire Exposed Concrete Floor Systems, Ph.D. thesis, Department of Civil Engineering, University of Canterbury, New Zealand, 2003.
L. Lim, A. Buchanan, and P. Moss, Behaviour of Simply-Supported Two-Way Reinforced Concrete Slabs in Fire, Proceedings of "Designing Structure for Fire, " SFPE, pp. 227-236, 2003.
U. Schneider, Properties of Materials at High Temperatures: Concrete, Department of Civil Engineering, Gesamthochschule Kassel, 1985.
M. Gillie, A. S. Usmani, and J. M. Rotter, A Structural Analysis of the Cardington British Steel Corner Test, Journal of Construction Steel Research, 58, pp. 427-442, 2002.
A. Usmani, Understanding the Response of Composite Structures to Fire, Proceedings of NASCC, Section D5, A.I.S.C. Inc., 2003
C. Ehm, Versuche zür Festichkeit und Verformung von Beton unter Zweiaxialer Beanspruchung und höhen Temperaturen, Ph.D. thesis, Inst. Fr Baustoffe, Massivbau and Brandschutz, Technischen Universität Braunschweig, 1986.
J. M. Franssen et al., A Comparison between Five Structural Fire Codes Applied to Steel Elements, Proceedings of the Fourth International Symposium, IAFSS, Fire Safety Science, 1984.