[en] Prussian blue pigments, highly insoluble mixed-valence iron(III) hexacyanoferrate(II) complexes of typical stoichiometry Fe4III[FeII(CN)6]3·xH2O or KFeIII[FeII(CN)6]·xH2O, have been used as pigments in oil paintings and watercolors for 300 years. For poorly understood reasons, these pigments often fade with time. Although the preparation methods have been recognized since the mid-eighteenth century as a contributory factor in the fading of the pigment, the spectral and physical properties of Prussian blue that vary with the type of synthesis were not precisely identified. Several Prussian blue pigments have been prepared by different methods and characterized by thermogravimetric analyses, high-energy powder X-ray diffraction, atomic absorption and flame emission, UV–visible, iron-57 Mössbauer, iron K-edge X-ray absorption, and Raman spectroscopy. The type of synthesis influences the hue, tinting strength, and hiding power properties of the Prussian blue pigments. Two major features appear to be strongly dependent on the preparative methods, the particle size and the local disorder. Both a nitrogen atmosphere and an intermediate aging step of the Berlin white, Fe2II[FeII(CN)6], during the synthesis are required to obtain a highly colored pigment through the optimization of particle size, minimization in the perturbations to the FeII–CN–FeIII intervalence electron transfer pathway, and the minimization of disordered vacancies. The potassium containing Prussian blue structure has been revisited. It can be described with the Pm3m space group, where approximately one-quarter of the [FeII(CN)6]4– sites are vacant and where the potassium cation is located at a zeolitic-like position inside the lattice cavities. The degree of ordering of the [FeII(CN)6]4– vacancies in all Prussian blues was quantified using atomic pair distribution analysis, an ordering that is consistent with the iron K-edge X-ray absorption spectra. The presence of strain in the crystals is observed by both powder X-ray diffraction and Mössbauer spectroscopy. The structural similarity between the alkali-free, improperly referred to as “insoluble”, and the alkali containing, “soluble”, Prussian blues may explain why the two varieties are almost undistinguishable by spectroscopic techniques.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others Arts & humanities: Multidisciplinary, general & others
Author, co-author :
Samain, Louise ; Université de Liège - ULiège > Centre européen en archéométrie
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
Long, Gary J.
Martinetto, Pauline
Bordet, Pierre
Strivay, David ; Université de Liège - ULiège > Département de physique > Physique nucléaire, atomique et spectroscopie
Language :
English
Title :
Relationship between the Synthesis of Prussian Blue Pigments, Their Color, Physical Properties, and Their Behavior in Paint Layers
Publication date :
11 April 2013
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
ISSN :
1932-7447
eISSN :
1932-7455
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Neff, V. D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue J. Electrochem. Soc. 1978, 125, 886-887
Mortimer, R. J. Electrochromic Materials Annu. Rev. Mater. Res. 1997, 41, 147-156 (Pubitemid 127097197)
De Tacconi, N. R.; Rajeshwar, K.; Lezna, R. O. Metal Hexacyanoferrates: Electrosynthesis, in Situ Characterization, and Applications Chem. Mater. 2003, 15, 3046-3062
Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G. Molecules to Build Solids: High TC Molecule-based Magnets by Design and Recent Revival of Cyano Complexes Chemistry Coord. Chem. Rev. 1999, 190-192, 1023-1047
Ito, A.; Suenaga, M.; Ono, K. Mössbauer Study of Soluble Prussian Blue, Insoluble Prussian Blue, and Turnbull's Blue J. Chem. Phys. 1968, 48, 3597-3599
Faustino, P. J.; Yang, Y.; Progar, J. J.; Brownell, C. R.; Sadrieh, N.; May, J. C.; Leutzinger, E.; Place, D. A.; Duffy, E. P.; Houn, F. Quantitative Determination of Cesium Binding to Ferric Hexacyanoferrate: Prussian Blue J. Pharm. Anal. 2008, 47, 114-25
Pyrasch, M.; Toutianoush, A.; Jin, W.; Schnepf, J.; Tieke, B. Self-assembled Films of Prussian Blue and Analogues: Optical and Electrochemical Properties and Application as Ion-sieving Membranes Chem. Mater. 2003, 15, 245-254
Xidis, A.; Neff, V. D. On the Electronic Conduction in Dry Thin Films of Prussian Blue, Prussian Yellow, and Everitt's Salt J. Electrochem. Soc. 1991, 138, 3637-3642
Wojdel, J. C.; Bromley, S. T. Band Gap Variation in Prussian Blue via Cation-Induced Structural Distortion J. Phys. Chem. B 2006, 110, 24294-24298 (Pubitemid 46065722)
Robin, M. B. The Color and Electronic Configurations of Prussian Blue Inorg. Chem. 1962, 1, 337-342
Chadwick, B. M.; Sharpe, A. G. Transition Metal Cyanides and Their Complexes. In Advances in Inorganic Chemistry and Radiochemistry; Emeléus, H. J.; Sharpe, A. G., Eds.; Academic Press: New York and London, 1966; Vol. 8, p 83.
Ludi, A. In Mixed-Valence Compounds: Theory and Applications in Chemistry, Physics, Geology, and Biology; Brown, D. B., Ed.; Springer: New York, 1979; Vol. 58, p 25.
Kirby, J.; Saunders, D. Fading and Colour Change of Prussian Blue: Methods of Manufacture and the Influence of Extenders Natl. Gallery Technical Bull. 2004, 25, 73-99
Samain, L.; Silversmit, G.; Sanyova, J.; Vekemans, B.; Salomon, H.; Gilbert, B.; Grandjean, F.; Long, G. J.; Hermann, R. P.; Vincze, L. Fading of Modern Prussian Blue Pigments in Linseed Oil Medium J. Anal. At. Spectrom. 2011, 26, 930-941
Keggin, J. F.; Miles, F. D. Structures and Formulae of the Prussian Blues and Related Compounds Nature 1936, 137, 577-578
Bueno, P. R.; Ferreira, F. F.; Giménez-Romero, D.; Oliveira Setti, G.; Faria, R. C.; Gabrielli, C.; Perrot, H.; Garcia-Jareno, J. J.; Vicente, F. Synchrotron Structural Characterization of Electrochemically Synthesized Hexacyanoferrates Containing K+: A Revisited Analysis of Electrochemical Redox J. Phys. Chem. C 2008, 112, 13264-13271
Woodward, J. Praeparation Caerulei Prussiaci ex Germania Missa ad Johannem Woodward Philos. Trans. R. Soc., A 1724, XXXIII, 15
Samain, L.; Grandjean, F.; Long, G. J.; Martinetto, P.; Bordet, P.; Sanyova, J.; Strivay, D. Synthesis and Fading of Eighteenth-century Prussian Blue Pigments: a Combined Study by Spectroscopic and Diffractive Techniques using Laboratory and Synchrotron Radiation Sources J. Synchrotron Rad. 2013, 20, 460-473
Krafft, S. Pour l'emploi d'une nouvelle substance propre à fabriquer le bleu de Prusse. Description des machines et procédés pour lesquels des brevets d'invention ont été pris sous le régime de la loi du 5 juillet 1844; Paris, 1854; Vol. 17, pp 159-160.
Samain, L.; Gilbert, B.; Grandjean, F.; Long, G. J.; Strivay, D. Redox Reactions in Prussian Blue Containing Paint Layers as a Result of Light Exposure J. Anal. At. Spectrom. 2013, 28, 524-535
Maer, K., Jr.; Beasley, M. L.; Collins, R. L.; Milligan, W. O. Structure of the Titanium-iron Cyanide Complexes J. Am. Chem. Soc. 1968, 90, 3201-3208
Delamare, F. Bleus en Poudres, de l'Art à l'Industrie, 5000 Ans d'Innovations; Ecole des Mines de Paris: Paris, 2007; p 231.
Buser, H.; Schwarzenbach, D.; Petter, W.; Ludi, A. The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3· x H2O Inorg. Chem. 1977, 16, 2704-2710
Samain, L. Degradation Mechanisms of Prussian Blue Pigments in Paint Layers. Ph.D. Thesis, University of Liège, March 2012.
Weber, G.; Martinot, L.; Strivay, D.; Garnir, H.-P.; George, P. Application of PIXE and PIGE under Variable Ion Beam Incident Angle to Several Fields of Archaeometry X-Ray Spectrom. 2005, 34, 297-300 (Pubitemid 41016914)
Weatherstone, A.; Vormwald, M.; Boyd, N.; Campbell, I. The GUPIXWIN Manual and User Guide; University of Guelph, 2000.
Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Haüsermann, D. Two-dimensional Detector Software: From Real Detector to Idealised Image or Two-theta Scan J. High Pressure Res. 1996, 14, 235-248 (Pubitemid 126486815)
Proffen, T.; Billinge, S. J. L. PDFFIT, a Program for Full Profile Structural Refinement of the Atomic Pair Distribution Function J. Appl. Crystallogr. 1999, 32, 572-575 (Pubitemid 129699396)
Qiu, X.; Thompson, J. W.; Billinge, S. J. L. PDFgetX2: a GUI Driven Program to Obtain the Pair Distribution Function from X-ray Powder Diffraction Data J. Appl. Crystallogr. 2004, 37, 678-678
Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Bozin, E. S.; Bloch, J.; Proffen, T.; Billinge, S. J. L. PDFfit2 and PDFgui: Computer Programs for Studying Nanostructure in Crystals J. Phys.: Condens. Matter 2007, 19, 335219
Rodriguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction Physica B 1993, 192, 55-69
Silversmit, G.; Poelman, H.; Balcaen, V.; Heynderickx, P. M.; Olea, M.; Nikitenko, S.; Bras, W.; Smet, P. F.; Poelman, D.; De Gryse, R. In-situ XAS study on the Cu and Ce Local Structural Changes in a CuO-CeO2/Al 2O3 Catalyst under Propane Reduction and Re-oxidation J. Phys. Chem. Solids 2009, 70, 1274-1284
Vaarkamp, M.; Linders, J. C.; Koningsberger, D. C. A New Method for Parameterization of Phase Shift and Backscattering Amplitude Physica B 1995, 208-209, 159-160
Vaarkamp, M.; Dring, I.; Oldman, R. J.; Stern, E. A.; Koningsberger, D. C. Comparison of Theoretical Methods for the Calculation of Extended X-ray-Absorption Fine Structure Phys. Rev. B 1994, 50, 7872-7883
Cook, J. W., Jr.; Sayers, D. Criteria for Automatic X-ray Absorption Fine Structure Background Removal J. Appl. Phys. 1981, 52, 5024-5031 (Pubitemid 12431115)
Koningsberger, D. C.; Mojet, B.; van Dorssen, G.; Ramaker, D. XAFS Spectroscopy; Fundamental Principle and Data Analysis Top. Catal. 2000, 10, 143-145
Ankudinov, A.; Ravel, B.; Rehr, J.; Conradson, S. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure Phys. Rev. B 1998, 58, 7565-7576 (Pubitemid 128486524)
Oyarzùn, J. M. Pigment Processing, Physico-chemical Principles; Vincentz Verlag: Hannover, 2000.
Rosseinsky, D. R.; Lim, H.; Jiang, H. J.; Chai, J. W. Optical Charge-transfer in Iron(III) Hexacyanoferrate(II): Electro-intercalated Cations Induce Lattice-energy-dependent Ground-State Energies Inorg. Chem. 2003, 42, 6015-6023
Gratzfeld, E.; Clausen, E.; Reinhardt, H.; Schaefer, H. Iron Blue Pigment, Process for Making the Same and Use. U.S. Patent 4,378,995, April 5, 1983.
Kaye, S. S.; Long, J. R. The Role of Vacancies in the Hydrogen Storage Properties of Prussian Blue Analogues Catal. Today 2007, 120, 311-316 (Pubitemid 46135917)
Kubelka, P.; Munk, F. Ein Beitrag zur Optik der Farbanstriche Z. Tech. Phys. 1931, 12, 593-601
Mie, G. Beiträge zur Optik trüber Medien, Speziell Kolloidaler Metallösungen Ann. Phys. 1908, 330, 377-445
Taft, W. S.; Mayer, J. W. The Science of Paintings; Springer: New York, 2000.
Wertheim, G. K.; Rosencwaig, A. Characterization of Inequivalent Iron Sites in Prussian Blue by Photoelectron Spectroscopy J. Chem. Phys. 1971, 54, 3235-3237
Fluck, E.; Inoue, H.; Yanagisawa, S. Mössbauer and X-ray Photoelectron Spectroscopic Studies of Prussian Blue and its Related Compounds Z. Anorg. Allg. Chem. 1977, 430, 241-249
Grandjean, F.; Long, G. J.; Samain, L. The Pivotal Role of Mössbauer Spectroscopy in the Characterization of Prussian Blue and Related Iron Cyanide Complexes Mössbauer Effect Research Data J. 2012, 35, 143-153
Shenoy, G. K.; Wagner, F. E.; Kalvius, G. M. In Mössbauer Isomer Shifts; Shenoy, G. K.; Wagner, F. E., Eds.; North-Holland: Amsterdam, 1978; p 49.
Owen, T.; Grandjean, F.; Long, G. J.; Domasevitch, K. V.; Gerasimchuk, N. N. Synthesis and Characterization of Two Intensely Colored Tris(benzoylcyanoxime)iron(II) Anionic Complexes Inorg. Chem. 2008, 47, 8704-8713
Ware, M. Prussian Blue: Artists' Pigment and Chemists' Sponge J. Chem. Educ. 2008, 85, 612-620
Guinebretière, R. Diffraction des Rayons X sur Echantillons Polycristallins, Instrumentation et Etude de la Microstructure; Hermes Science and Lavoisier: Paris, 2006.
Williamson, G. K.; Hall, W. H. X-ray Line Broadening from Filed Aluminium and Wolfram Acta Metall. 1953, 1, 22-31
Rietveld, H. M. Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement Acta Crystallogr. 1967, 22, 151-152
Herren, F.; Fischer, P.; Ludi, A.; Haelg, W. Neutron Diffraction Study of Prussian Blue, Fe4[Fe(CN)6]3· x H 2O. Location of Water Molecules and Long-range Magnetic Order Inorg. Chem. 1980, 19, 956-959
Bunker, G. Introduction to XAFS, A Practical Guide to X-ray Absorption Fine Structure Spectroscopy; Cambridge University Press: Cambridge, UK, 2010.
Kulesza, P. J.; Zamponi, S.; Berrettoni, M.; Marassi, R.; Malik, M. A. Preparation, Spectroscopic Characterization and Electrochemical Charging of the Sodium-containing Analogue of Prussian Blue Electrochim. Acta 1995, 40, 681-688
Glatzel, P.; Jacquamet, L.; Bergmann, U.; de Groot, M. F. M.; Cramer, S. P. Site-Selective EXAFS in Mixed-Valence Compounds Using High-Resolution Fluorescence Detection: A Study of Iron in Prussian Blue Inorg. Chem. 2002, 41, 3121-3127
Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley-Interscience Publication: New York, 1978; p 178.
Kettle, S. F. A.; Aschero, G. L.; Diana, E.; Rossetti, R.; Stanghellini, P. L. The Vibrational Spectra of the Cyanide Ligand Revisited: Terminal Cyanides Inorg. Chem. 2006, 45, 4928-4937
Kettle, S. F. A.; Diana, E.; Marchese, E. M. C.; Boccaleri, E.; Stanghellini, P. L. The Vibrational Spectra of the Cyanide Ligand Revisited: the ν(CN) Infrared and Raman Spectroscopy of Prussian Blue and its Analogues J. Raman Spectrosc. 2011, 42, 2006-2014
Barsan, M. M.; Butler, I. S.; Fitzpatrick, J.; Gilson, D. F. R. High-pressure Studies of the Micro-Raman Spectra of Iron Cyanide Complexes: Prussian Blue (Fe4[Fe(CN)6]3), Potassium Ferricyanide (K3[Fe(CN)6]), and Sodium Nitroprusside (Na2[Fe(CN)5(NO)]·2H2O) J. Raman Spectrosc. 2011, 42, 1820-1824
Jolivet, J. P.; Henry, M.; Livage, J. Metal Oxide Chemistry and Synthesis: From Solution to Solid State; John Wiley & Sons: Chichester, 2000; pp 39-40.