[en] Studies of functional connectivity suggest that the default mode network (DMN) might be
relevant for cognitive functions. Here, we examined metabolic and structural connectivity between
major DMN nodes, the posterior cingulate (PCC) and medial prefrontal cortex (MPFC), in relation
to normal working memory (WM).
DMN was captured using independent component analysis of [18F]fluorodeoxyglucose
positron emission tomography (FDG-PET) data from 35 young healthy adults (27.1±5.1 years).
Metabolic connectivity, a correlation between FDG uptake in PCC and MPFC, was examined in
groups of subjects with (relative to median) low (n=18) and high (n=17) performance on digit span
backward test as an index of verbal WM. In addition, fiber tractography based on PCC and MPFC
nodes as way points was performed in a subset of subjects.
FDG uptake in the DMN nodes did not differ between high and low performers. However,
significantly (p=0.01) lower metabolic connectivity was found in the group of low performers.
Furthermore, as compared to high performers, low performers showed lower density of the left
superior cingulate bundle.
Verbal WM performance is related to metabolic and structural connectivity within the DMN in
young healthy adults. Metabolic connectivity as quantified with FDG-PET might be a sensitive
marker of the normal variability in some cognitive functions.
Disciplines :
Neurosciences & behavior
Author, co-author :
Yakushev, Igor
Chételat, Gael
Fischer F.U.
Lanbeau, Brigitte
Bastin, Christine ; Université de Liège - ULiège > Centre de recherches du cyclotron
Scheurich, Armin
Perrotin, Audrey
Bahri, Mohamed Ali ; Université de Liège - ULiège > Centre de recherches du cyclotron
Drzezga, Alexander
Eustache, Francis
Schreckenberger, Matthias
Fellgiebel, Andreas
Salmon, Eric ; Université de Liège - ULiège > Centre de recherches du cyclotron
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ackerman P.L., Beier M.E., Boyle M.O. Working memory and intelligence: the same or different constructs?. Psychol. Bull. 2005, 131:30-60.
Anticevic A., Repovs G., Shulman G.L., Barch D.M. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage 2010, 49:2638-2648.
Baddeley A., Emslie H., Nimmo-Smith I. The Spot-the-Word test: a robust estimate of verbal intelligence based on lexical decision. Br. J. Clin. Psychol. 1993, 32:55-65.
Bastin C., Yakushev I., Bahri M.A., Fellgiebel A., Eustache F., Landeau B., Scheurich A., Feyers D., Collette F., Chételat G., Salmon E. Cognitive reserve impacts on inter-individual variability in resting-state cerebral metabolism in normal aging. NeuroImage 2012, 63:713-722.
Calhoun V.D., Adali T., Pearlson G.D., Pekar J.J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 2001, 14:140-151.
Chételat G., Desgranges B., Landeau B., Mézenge F., Poline J.B., de la Sayette V., Viader F., Eustache F., Baron J.C. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer's disease. Brain 2008, 131:60-71.
Chételat G., Landeau B., Salmon E., Yakushev I., Bahri M.A., Mézenge F., Perrotin A., Bastin C., Manrique A., Scheurich A., Scheckenberger M., Desgranges B., Eustache F., Fellgiebel A. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. NeuroImage 2013, (Mar 18. doi:pii: S1053-8119(13)00238-3. http://dx.doi.org/10.1016/j.neuroimage.2013.03.009. [Epub ahead of print]).
Cilia R., Cho S.S., van Eimeren T., Marotta G., Siri C., Ko J.H., Pellecchia G., Pezzoli G., Antonini A., Strafella A.P. Pathological gambling in patients with Parkinson's disease is associated with fronto-striatal disconnection: a path modeling analysis. Mov. Disord. 2011, 26:225-233.
Clark C.M., Kessler R., Buchsbaum M.S., Margolin R.A., Holcomb H.H. Correlational methods for determining regional coupling of cerebral glucose metabolism: a pilot study. Biol. Psychiatry 1984, 19:663-678.
Collette F., Salmon E., Van der Linden M., Chicherio C., Belleville S., Degueldre C., Delfiore G., Franck G. Regional brain activity during tasks devoted to the central executive of working memory. Brain Res. Cogn. Brain Res. 1999, 7:411-417.
Di X., Biswal And Alzheimer's Disease Neuroimaging Initiative B.B. Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain connectivity 2012, 2:275-283.
Dineen R.A., Vilisaar J., Hlinka J., Bradshaw C.M., Morgan P.S., Constantinescu C.S., Auer D.P. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 2009, 132:239-249.
Düzel E., Schütze H., Yonelinas A.P., Heinze H.J. Functional phenotyping of successful aging in long-term memory: preserved performance in the absence of neural compensation. Hippocampus 2011, 21:803-814.
Esposito F., Aragri A., Latorre V., Popolizio T., Scarabino T., Cirillo S., Marciano E., Tedeschi G., Di Salle F. Does the default-mode functional connectivity of the brain correlate with working-memory performances?. Arch. Ital. Biol. 2009, 147:11-20.
Fischer F.U., Scheurich A., Wegrzyn M., Schermuly I., Bokde A.L.W., Klöppel S., Pouwels P.J.W., Teipel S., Yakushev I., Fellgiebel A. Automated tractography of the cingulate bundle in Alzheimer's disease: a multicenter DTI study. J. Magn. Reson. Imaging 2012, 36:84-91.
Fouquet M., Desgranges B., Landeau B., Duchesnay E., Mézenge F., de la Sayette V., Viader F., Baron J.C., Eustache F., Chételat G. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain 2009, 132:2058-2067.
Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 2006, 44:2836-2845.
Greicius M.D., Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J. Cogn. Neurosci. 2004, 16:1484-1492.
Greicius M.D., Supekar K., Menon V., Dougherty R.F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 2009, 19:72-78.
Hampson M., Driesen N.R., Skudlarski P., Gore J.C., Constable R.T. Brain connectivity related to working memory performance. J. Neurosci. 2006, 26:13338-13343.
Honey C.J., Sporns O., Cammoun L., Gigandet X., Thiran J.P., Meuli R., Hagmann P. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:2035-2040.
Horwitz B., Duara R., Rapoport S.I. Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J. Cereb. Blood Flow Metab. 1984, 4:484-499.
Huang S., Li J., Sun L., Ye J., Fleisher A., Wu T., Chen K., Reiman E., Alzheimer's Disease NeuroImaging Initiative Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. NeuroImage 2010, 50:935-949.
Jaeggi S.M., Buschkuehl M., Jonides J., Perrig W.J. Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:6829-6833.
Kravariti E., Russo M., Vassos E., Morgan K., Fearon P., Zanelli J.W., Demjaha A., Lappin J.M., Tsakanikos E., Dazzan P., Morgan C., Doody G.A., Harrison G., Jones P.B., Murray R.M., Reichenberg A. Linear and non-linear associations of symptom dimensions and cognitive function in first-onset psychosis. Schizophr. Res. 2012, 140:221-231.
Le Bihan D., Mangin J.F., Poupon C., Clark C.A., Pappata S., Molko N., Chabriat H. Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 2001, 13:534-546.
Lee D.S., Kang H., Kim H., Park H., Oh J.S., Lee J.S., Lee M.C. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. Eur. J. Nucl. Med. Mol. Imaging 2008, 35:1681-1691.
Mayer J.S., Roebroeck A., Maurer K., Linden D.E.J. Specialization in the default mode: task-induced brain deactivations dissociate between visual working memory and attention. Hum. Brain Mapp. 2010, 31:126-139.
Metter E.J., Riege W.H., Kuhl D.E., Phelps M.E. Cerebral metabolic relationships for selected brain regions in healthy adults. J. Cereb. Blood Flow Metab. 1984, 4:1-7.
Mevel K., Desgranges B., Baron J.C., Landeau B., De la Sayette V., Viader F., Eustache F., Chételat G. Detecting hippocampal hypometabolism in mild cognitive impairment using automatic voxel-based approaches. NeuroImage 2007, 37:18-25.
Morbelli S., Drzezga A., Perneczky R., Frisoni G.B., Caroli A., van Berckel B.N.M., Ossenkoppele R., Guedj E., Didic M., Brugnolo A., Sambuceti G., Pagani M., Salmon E., Nobili F. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer Disease Consortium (EADC) project. Neurobiol. Aging 2012, 33:2533-2550.
Owen A.M., McMillan K.M., Laird A.R., Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25:46-59.
Phelps M.E., Schelbert H.R., Mazziotta J.C. Positron computed tomography for studies of myocardial and cerebral function. Ann. Intern. Med. 1983, 98:339-359.
Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 2012, 59:2142-2154.
Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 2001, 98:676-682.
Rilling J.K., Barks S.K., Parr L.A., Preuss T.M., Faber T.L., Pagnoni G., Bremner J.D., Votaw J.R. A comparison of resting-state brain activity in humans and chimpanzees. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:17146-17151.
Rocher A.B., Chapon F., Blaizot X., Baron J.C., Chavoix C. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. NeuroImage 2003, 20:1894-1898.
Salmon E., Kerrouche N., Perani D., Lekeu F., Holthoff V., Beuthien-Baumann B., Sorbi S., Lemaire C., Collette F., Herholz K. On the multivariate nature of brain metabolic impairment in Alzheimer's disease. Neurobiol. Aging 2009, 30:186-197.
Sambataro F., Murty V.P., Callicott J.H., Tan H.Y., Das S., Weinberger D.R., Mattay V.S. Age-related alterations in default mode network: impact on working memory performance. Neurobiol. Aging 2010, 31:839-852.
Schott B.H., Niklas C., Kaufmann J., Bodammer N.C., Machts J., Schütze H., Düzel E. Fiber density between rhinal cortex and activated ventrolateral prefrontal regions predicts episodic memory performance in humans. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:5408-5413.
Sepulcre J., Masdeu J.C., Pastor M.A., Goñi J., Barbosa C., Bejarano B., Villoslada P. Brain pathways of verbal working memory: a lesion-function correlation study. NeuroImage 2009, 47:773-778.
Shao J., Myers N., Yang Q., Feng J., Plant C., Böhm C., Förstl H., Kurz A., Zimmer C., Meng C., Riedl V., Wohlschläger A., Sorg C. Prediction of Alzheimer's disease using individual structural connectivity networks. Neurobiol. Aging 2012, 33:2756-2765.
Sonuga-Barke E.J.S., Castellanos F.X. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci. Biobehav. Rev. 2007, 31:977-986.
Tomasi D., Ernst T., Caparelli E.C., Chang L. Common deactivation patterns during working memory and visual attention tasks: an intra-subject fMRI study at 4Tesla. Hum. Brain Mapp. 2006, 27:694-705.
Toussaint P.J., Perlbarg V., Bellec P., Desarnaud S., Lacomblez L., Doyon J., Habert M.O., Benali H., Benali F.T.A.D.N.I. Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer's disease using conjoint univariate and independent component analyses. NeuroImage 2012, 63:936-946.
Turner D.C., Robbins T.W., Clark L., Aron A.R., Dowson J., Sahakian B.J. Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl.) 2003, 165:260-269.
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002, 15:273-289.
Uddin L.Q., Kelly A.M., Biswal B.B., Castellanos F.X., Milham M.P. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 2009, 30:625-637.
van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010, 20:519-534.
van den Heuvel M.P., Mandl R.C.W., Kahn R.S., Hulshoff Pol H.E. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 2009, 30:3127-3141.
Van Dijk K.R.A., Sabuncu M.R., Buckner R.L. The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 2012, 59:431-438.
Villain N., Fouquet M., Baron J.C., Mézenge F., Landeau B., de La Sayette V., Viader F., Eustache F., Desgranges B., Chételat G. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease. Brain 2010, 133:3301-3314.
Walhovd K.B., Fjell A.M. White matter volume predicts reaction time instability. Neuropsychologia 2007, 45:2277-2284.
Waters G.S., Caplan D. The reliability and stability of verbal working memory measures. Behav. Res. Methods Instrum. Comput. 2003, 35:550-564.
Wechsler D. Wechsler Adult Intelligence Scale-Third Edition. Manual 1997, The Psychological Corporation, San Antonio, TX.
Weissman D.H., Roberts K.C., Visscher K.M., Woldorff M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 2006, 9:971-978.
Wermke M., Sorg C., Wohlschläger A.M., Drzezga A. A new integrative model of cerebral activation, deactivation and default mode function in Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 2008, 35(Suppl. 1):S12-S24.
Wolf D., Fischer F.U., Fesenbeckh J., Yakushev I., Lelieveld I.M., Scheurich A., Schermuly I., Zschutschke L., Fellgiebel A. Structural integrity of the corpus callosum predicts long-term transfer of fluid intelligence-related training gains in normal aging. Hum. Brain Mapp. 2013, (in press). 10.1002/hbm.22177.
Zaninotto A.L.C., Bueno O.F.A., Pradella-Hallinan M., Tufik S., Rusted J., Stough C., Pompéia S. Acute cognitive effects of donepezil in young, healthy volunteers. Hum. Psychopharmacol. 2009, 24:453-464.
Zuendorf G., Kerrouche N., Herholz K., Baron J.C. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Hum. Brain Mapp. 2003, 18:13-21.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.