Bayesian methods; particle filter, variational filter; crop model
Abstract :
[en] The problem of state/parameter estimation represents a key issue in crop models which are nonlinear, non-Gaussian and include a large number of parameters. The prediction errors are often important due to uncertainties in the equations, the input variables, and the parameters. The measurements needed to run the model (input data), to perform calibration and validation are sometimes not numerous or known with some uncertainty.
In these cases, estimating the state variables and/or parameters from easily obtained measurements can be extremely useful. In this work, we address the problem of modeling and prediction of leaf area index and soil moisture (LSM) using state estimation. The performances of various conventional and state-of-the-art state estimation techniques are compared when they are utilized to achieve this objective. These techniques include the extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and the more recently developed technique variational Bayesian filter (VF).
The objective of this work is to extend the state and parameter estimation techniques (i.e., EKF, UKF, PF and VF) to better handle nonlinear and non-Gaussian processes without a priori state information, by utilizing a time-varying assumption of statistical parameters. In this case, the state vector to be estimated at any instant is assumed to follow a Gaussian model, where the expectation and the covariance matrix are both random. The randomness of the expectation and the covariance of the state/parameter vector are assumed here to further capture the uncertainty of the state distribution. One practical choice of these distributions can be a Gaussian distribution for the expectation and a multi-dimensional Wishart distribution for the covariance matrix. The assumption of random mean and random covariance of the state leads to a probability distribution covering a wide range of tail behaviors, which allows discrete jumps in the state variables.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Mansouri, Majdi ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Dumont, Benjamin ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Destain, Marie-France ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Language :
English
Title :
Modeling and Prediction of Time-Varying Environmental Data Using Advanced Bayesian Methods
Publication date :
2013
Main work title :
Exploring Innovative and Successful Applications of Soft Computing
Editor :
Masegosa, Antoçnio
Villacorta, Pablo
Cruz-Corona, Carlos
Garcia-Cascales, Socorro
Lamata, Maria
Verdegay, Jose
Publisher :
IGI Global, Hershey PA, United States
ISBN/EAN :
978-1-4666-4785-5
Pages :
112-137
Peer reviewed :
Peer reviewed
Name of the research project :
Correction des erreurs de prédiction d'un modèle de culure dynamique avec des mesures issues de microcapteurs sans fil
Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc., 401-419.
Beal, M. (2003). Variational algorithms for approximate bayesian inference. (Unpublished doctoral dissertation). Gatsby Computational Neuroscience Unit, University College London, London, UK.
Chen, G., Xie, Q., & Shieh, L. (1998). Fuzzy Kalman filtering. Journal of Information Science, 197-209.
Corduneanu, A., & Bishop, C. (2001). Variational Bayesian model selection for mixture distribution.Artificial Intelligence and Statistics..
Doucet, A., & Johansen, A. (2009). A tutorial on particle filtering and smoothing: Fifteen years later. In Handbook of Nonlinear Filtering (pp.656-704). Academic Press..
Doucet, A., & Tadic, V. (2003). Parameter estimation in general state-space models using particle methods. Annals of the Institute of Statistical Mathematics, 409-422. doi:10.1007/BF02530508.
Grewal, M., & Andrews, A. (2008). Kalman filtering: Theory and practice using MATLAB.Hoboken, NJ: John Wiley and Sons.doi:10.1002/9780470377819.
Julier, S., & Uhlmann, J. (1997). New extension of the Kalman filter to nonlinear systems.In Proceedings of SPIE (pp. 182-193). SPIE.doi:10.1117/12.280797.
Kim, Y., Sul, S., & Park, M. (1994). Speed sensorless vector control of induction motor using extended kalman filter. IEEE Transactions on Industry Applications, 30(5), 1225-1233.doi:10.1109/28.315233.
Kotecha, J., & Djuric, P. (2003). Gaussian particle filtering. IEEE Transactions on Signal Processing, 2592-2601. doi:10.1109/TSP.2003.816758.
Kotecha, J., & Djuric, P. (2003). Gaussian particle filtering. IEEE Transactions on Signal Processing, 51(10), 2592-2601. doi:10.1109/TSP.2003.816758.
Ljung, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. on Automatic Control, 36-50.
Makowski, D., Hillier, D., Wallach, D., Andrieu, B., & Jeuffroy, M.-H. (2006). Parameter estimation for crop models. In Working with Dynamic Crop Models. London: Elsevier..
Mansouri, M., Dumont, B., & Destain, M.-F.(2011). Bayesian methods for predicting LAIand soil Moisture. In Proceedings of the 12th International Conference on Precision Agriculture (ICPA). Indianapolis, IN: ICPA.
Mansouri, M., Dumont, B., & Destain, M.-F.(2013). Modeling and prediction of nonlinear environmental system using bayesian methods.Computers and Electronics in Agriculture, 92, 16-31. doi:10.1016/j.compag.2012.12.013.
Poyiadjis, G., Doucet, A., & Singh, S. (2005).Maximum likelihood parameter estimation in general state-space models using particle methods.In Proceedings of the American Stat. Assoc. ASA.
Sarkka, S. (2007). On unscented kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Automatic Control, 1631-1641.
Simon, D. (2003). Kalman filtering of fuzzy discrete time dynamic systems. Applied Soft Computing, 191-207. doi:10.1016/S1568-4946(03)00034-6.
Simon, D. (2006). Optimal state estimation: Kalman, H1, and nonlinear approaches. Hoboken, NJ: John Wiley and Sons. doi:10.1002/0470045345.
Smidl, V., & Quinn, A. (2005). The variational Bayes method in signal processing. New York: Springer-Verlag..
Tremblay, M., & Wallach, D. (2004). Comparison of parameter estimation methods for crop models.Agronomie, 24(6-7), 351-365. doi:10.1051/agro:2004033.
Van Der Merwe, R., & Wan, E. (2001). The square-root unscented kalman filter for state and parameter-estimation. In Proceedings of IEEEInternational Conference on Acoustics, Speech, and Signal Processing, (pp. 3461-3464). IEEE.
Vermaak, J., Lawrence, N., & Perez, P. (2003).Variational inference for visual tracking. In Proceedings of Computer Vision and Pattern Recognition. IEEE..
Wan, E., & Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation.In Adaptive Systems for Signal Processing, Communications, and Control Symposium, (pp.153-158). Academic Press.