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ABSTRACT 
 

The problem of state/parameter estimation represents a key issue in crop models which are 
nonlinear, non-Gaussian and include a large number of parameters. The prediction errors are often 
important due to uncertainties in the equations, the input variables, and the parameters. The measurements 
needed to run the model (input data), to perform calibration and validation are sometimes not numerous 
or known with some uncertainty. 
 

In these cases, estimating the state variables and/or parameters from easily obtained 
measurements can be extremely useful. In this work, we address the problem of modeling and prediction 
of leaf area index and soil moisture (LSM) using state estimation. The performances of various 
conventional and state-of-the-art state estimation techniques are compared when they are utilized to 
achieve this objective. These techniques include the extended Kalman filter (EKF), unscented Kalman 
filter (UKF), particle filter (PF), and the more recently developed technique variational Bayesian filter 
(VF).  

The objective of this work is to extend the state and parameter estimation techniques (i.e., EKF, 
UKF, PF and VF) to better handle nonlinear and non-Gaussian processes without a priori state 
information, by utilizing a time-varying assumption of statistical parameters. In this case, the state vector 
to be estimated kz at any instant k is assumed to follow a Gaussian model, where the expectation kµ and 

the covariance matrix kλ  are both random. The randomness of the expectation and the covariance of the 

state/parameter vector are assumed here to further capture the uncertainty of the state distribution. One 
practical choice of these distributions can be a Gaussian distribution for the expectation and a multi-
dimensional Wishart distribution for the covariance matrix. The assumption of random mean and random 
covariance of the state leads to a probability distribution covering a wide range of tail behaviors, which 
allows discrete jumps in the state variables, kz  

 
 



The results of the comparative studies show that the PF provides a higher accuracy than the EKF, 
which is due to the limited ability of the EKF to handle highly nonlinear processes. The results also show 
that the PF provides a significant improvement over the UKF. This is because the covariance is 
propagated through linearization of the underlying non-linear model, when the state transition and 
observation models are highly non-linear. The results also indicate that the VF provides a significant 
improvement over the PF because, unlike the PF which depends on the choice of sampling distribution 
used to estimate the posterior distribution, the VF yields an optimum choice of the sampling distribution, 
which also accounts for the observed data. The original data were issued from experiments carried out on 
a silty soil in Belgium, with a wheat crop, during two consecutive years, the seasons 2008-09 and 2009-
10. 
 
 

I. INTRODUCTION 
 

Parameter and states estimation in nonlinear environmental systems is an important issue in 
diagnosis, measurement and modeling. However, due to the difficulty of, or cost associated with, 
obtaining these measurements, state and/or parameter estimators are often used to overcome this problem. 
Crop models such as EPIC [1], WOFOST [2], DAISY[3], STICS [4], and SALUS [5] are dynamic non-
linear models that describe the growth and development of a crop interacting with environmental factors 
(soil and climate) and agricultural practices (crop species, tillage type, fertilizer amount, etc. ). They are 
developed to predict crop yield and quality or to optimize the farming practices in order to satisfy 
environmental objectives, as the reduction of nitrogen lixiviation. More recently, crop models are used to 
simulate the effects of climate changes on the agricultural production. Nevertheless, the prediction errors 
of these models may be important due to uncertainties in the estimates of initial values of the states, in 
input data, in the parameters, and in the equations. The measurements needed to run the model are 
sometimes not numerous, whereas the field spatial variability and the climatic temporal fluctuations over 
the field may be high. The degree of accuracy is therefore difficult to estimate, apart from numerous 
repetitions of measurements. For these reasons, the problem of state/parameter estimation represents a 
key issue in such nonlinear and non-Gaussian crop models including a large number of parameters, while 
measurement noise exists in the data. 
 

Several state estimation techniques have been developed and used in practice. These techniques 
include the extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and more 
recently the variational Bayesian filter (VF). The classical Kalman Filter (KF) was developed in the 1960s 
[6], and has been widely used in various engineering and science applications, including communications, 
control, machine learning, neuroscience, and many others. In the case where the model describing the 
system is assumed to be linear and Gaussian, the KF provides an optimal solution [7, 8, 9, 10]. The KF 
has also been formulated in the context of Takagi-Sugeno fuzzy systems to handle nonlinear models, 
which can be described as a convex set of multiple linear models [11, 12, 13]. It is known that the KF is 
computationally efficient; however, it is limited by the non-universal linear and Gaussian modeling 
assumptions. To relax these assumptions, the extended Kalman filter (EKF) [7, 8, 14, 15, 16] and the 
unscented Kalman filter (UKF) [17, 18, 19] have been developed. In extended Kalman filtering, the 
model describing the system is linearized at every time sample (in order to estimate the mean and 
covariance matrix of the state vector), and thus the model is assumed to be differentiable. Unfortunately, 
for highly nonlinear or complex models, the EKF does not usually provide a satisfactory performance. On 
the other hand, instead of linearizing the model to approximate the mean and covariance matrix of the 
state vector, the UKF uses the unscented transformation to improve the approximation of these moments. 
In the unscented transformation, a set of samples (called sigma points) are selected and propagated 
through the nonlinear model, which provides more accurate approximations of the mean and covariance 
matrix of the state vector, and thus more accurate state estimation. 



 
Other state estimation techniques use a Bayesian framework to estimate the state and/or 

parameter vector [20]. This approach relies on computing the probability distribution of the unobserved 
state given a sequence of the observed data in addition to a state evolution model. Consider an observed 
data set y which is generated from a model defined by a set of unknown state variables and/or or 
parameters z. The beliefs about the data are completely expressed via the parametric probabilistic 
observation model( )zyP . The learning on uncertainty or randomness of a process is solved by 

constructing a distribution( )yzP , called the posterior distribution, which quantifies our belief about the 

system after obtaining the measurements. According to Bayes theorem, the posterior can be expresses as 
 

( ) ( ) ( )
( )yP

zPzyP
yzP =        

where ( )zyP  is the conditional distribution of the data given the vector z, which is called the likelihood 

function, ( )zP  is the prior distribution which quantifies our belief about z before obtaining the 

measurements, and ( )yP is the distribution of the data. Unfortunately, for most nonlinear systems and 
non-Gaussian noise observations, closed-form analytic expressions of the posterior distribution of the 
state vector are untractable ([21]).  To overcome this drawback, a nonparametric Monte Carlo sampling 
based method called Particle Filtering (PF) has been proposed by Doucet and Tadic [25]. The latter 
method presents several advantages since: (i) it can account for the constraint of small number of data 
samples, (ii) the online update of the filtering distribution and its compression are simultaneously 
performed, and (iii) it yields an optimal choice of the sampling distribution over the state variable by 
minimizing the Kullback-Leibler (KL) divergence.  
 

Recently, a variational filtering (VF) has been proposed for solving the nonlinear parameter 
estimation problem encountered in crop models. Mansouri et al. ([35,36]) used a Bayesian sampling 
method for modeling and prediction of nonlinear environmental system, where the nonlinear observed 
system was assumed to progress according to a probabilistic state space model. In this investigation, the 
state vector to be estimated (at any time instant) was assumed to follow a Gaussian model, where the 
expectation and the covariance matrix are constants.  

 
Each of the above state estimation techniques has its advantages and disadvantages. For example, 

the variational filter can be applied to large parameter spaces, has better convergence properties, and is 
easier to implement than the particle filter. Both of them can provide improved accuracy over the EKF.  

 
The general objective of this chapter is compare the performances of the EKF, UKF, PF, and VF 

when used to monitor and model an environmental process called LMS, which represents the temporal 
evolution of three state variables implied in the wheat crop growth and development: the leaf-area index 
(LAI), the soil moisture of the topsoil layer (0-30 cm) (HUR1), and the soil moisture of the subsoil layer 
(30-50 cm) (HUR2). This comparative study will assess the accuracy and convergence of the proposed 
techniques, as well as the effect of the size of the parameter space (i.e., number of estimated parameters) 
on the performances of the estimation techniques. Some practical challenges, however, can affect the 
accuracy of estimated states and/or parameters. Beside the existence of many parameters, it is necessary 
to consider the presence of noise in the measured data, and the restricted availability of some measured 
data samples. Consequently, the objectives of this chapter is two-fold: i) we study the accuracy and 
convergence of EKF, UKF, PF, and VF techniques, ii) we investigate the effect of the above challenges 
on the performances of these techniques. 
 



The rest of the chapter is organized as follows. In Section II, a statement of the problem 
addressed in this chapter is presented, followed by description of variational Bayesian filtering. Then, in 
Section III, the performances of the various state estimation techniques are compared through their 
application to estimate the state variables and model parameters of the LSM process. Finally, some 
concluding remarks are presented in Section IV.  
 
 

II. MATERIAL AND METHODS 
 

A. Problem Formulation 
 

Here, the estimation problem of interest is formulated for a general system model. Let a nonlinear 
state space model be described as follows: 
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where, x ∈ R� is a vector of the state variables, u ∈ R�  is a vector of the input variables (which can be 
changed as desired), θ ∈ R�  is an unknown parameter vector, y ∈ R
 is a vector of the measured 
variables, g and  l  are nonlinear differentiable functions, and  w ∈ R�  and v ∈ R
  are process and 
measurement noise, which quantify randomness in the process and errors in the measurements, 
respectively.   
 
Discretizing the state space model (1), the discrete model can be written as follows: 
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which describes the state variables at some time step (k ) in terms of their values at a previous time step  
( 1−k ). Note that in equation (2). The process and measurement noise vectors have the following 
properties:  

[ ] 0kE w =
, 

T
k k kE w w Q  =  , 

[ ] 0kE v =
, 

T
k k kE v v R  =  . 

The function f  is used to predict the value of the state vector at some time step )(k  given its value at the 

previous time step )1( −k , and the function h  relates the measured vector )( ky  to the state vector )( kx  

at the same time step.  Also, defining the augmented vector, ku is the vector of input variables, kθ is a 

parameter vector (assumed to be known), ky  is the vector of the measured variables, kw and kv  are 

respectively model and measurement noise vectors, and the matrices, kQ and kR , represent the covariance 

matrices of the process and measurement noise vectors, respectively. We assume that the error terms kw

and kv have normal distributions with zero expectation, and that they are mutually independent.   

Since we are interested to estimate the state vector kx , as well as the parameter vectorkθ , let’s assume 

that the parameter vector is described by the following model: 
  

1 1k k kθ θ γ− −= +                          (3) 



 
where 1−kγ  is white noise. In other words, the parameter vector model (3) corresponds to a stationary 

process, with an identity transition matrix, driven by white noise. We can define a new state vector that 
augments the two vectors together as follows: 
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where kz is assumed to follow a Gaussian model as ),(~ kkk Nz λµ   , and where at any time k  the 

expectation kµ and the covariance matrix kλ  are both random. Also, defining the augmented vector,  
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the model (2) can be written as: 
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B. Time-variant evolution systems 

 
Instead of the kinematic parametric model [28, 29, 30] which is usually used in estimation 

problems, we employ a time-variant evolution systems (TVES) [31]. This model is more appropriate to 
practical non- linear and non-gaussian situations where no a priori information on the state value is 
available.The state variable kz  at instant k  is assumed to follow a Gaussian model, where the expectation 

kµ  and the precision matrix kλ  are both random. Gaussian distribution for the expectation and Whishart 

distribution for the precision matrix form a practical choice for the filtering implementation. The hidden 
state kz  is extended to an augmented state ),,( kkkk z λµα = , yielding a hierarchical model as follows, 
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where the fixed hyperparameters nandS,,λ  are respectively the random walk precision matrix, the 
degrees of freedom and the precision of the Wishart distribution. Note that assuming random mean and 
covariance for the state kz  leads to a prior probability distribution covering a wide range of tail 

behaviors allowing discrete jumps in the state variable. 

In fact, the marginal state distribution is obtained by integrating over the mean and precision matrix: 



kkkkkkkkkk dxpzpzzp λµλµλµ )|,(),|()|( 11 −− ∫=
   (8) 

where the integration with respect to the precision matrix leads to the known class of scale mixture 
distributions introduced by Barndorff-Nielsen ([21]). Low values of the degrees of freedom  n  reflects 
the heavy tails of the marginal distribution )|( 1−kk zzp .   

Particle filtering methods offer a number of significant advantages over other conventional 
methods. However, since they use the prior distribution as the importance distribution [11], the latest data 
observation is not considered and not taken into account when evaluating the weights of the particles. 
Even this choice of the importance sampling distribution has computational advantages, it can cause 
filtering divergence. In cases where the likelihood distribution is too small compared to the prior 
distribution, very few particles will have significant weights. Hence, a better proposal distribution that 
takes the latest observation data into account is needed. The VF yields an optimal choice of the sampling 
distribution over the state variable by minimizing the Kullback-Leibler (KL) divergence. In addition, 
compared to the particle filtering method, the computational cost and the memory requirements are 
dramatically reduced by the variational approximation in the prediction phase. In fact, the expectations 
involved in the computation of the predictive distribution have closed forms, avoiding the use of Monte 
Carlo integration. Next, we present the variational Bayesian filter algorithm. 

C. Variational Bayesian Filter 
 

The variational approach consists in approximating )|( :1kk zp α  by a separable distribution  

)()()()( kkkk qqxqq λµα =  that minimizes the Kullback-Leibler divergence (KLD) between the true 

filtering distribution and the approximate distribution, 
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The minimization is subject to constraint 1)( =∫ kk dq αα . The Lagrange multiplier method used in 

[31,32] shows that the updated separable approximating distribution )( kq α  has the following form: 
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where .   denotes the expectation operator relative to the distribution q . The parameters are iteratively 

updated according to the following scheme:    
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In fact, taking into account the separable approximate distribution at time 1−k , the predictive 
distribution is written, 
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The exponential form solution, which minimizes the Kullback-Leibler divergence between the predictive 
distribution )|( 1:1 −kk zp α  and the separable approximate distribution )(1| α−kkq , yields Gaussian 

distributions for the state and its mean and Wishart distribution for the precision matrix: 
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where the parameters are updated according to the same iterative scheme as and the expectations are 
exactly computed as follows: 
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and the predictive expectations of the target state are now evaluated by the following expressions: 
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In the next Section, these state estimation techniques (EKF, UKF, PF, and VF) are used to estimate the 
states variables (the leaf-area index LAI, the volumetric water content of the layer 1, HUR1 and the 
volumetric water content of the layer 2, HUR2) as well as the model parameters of a LSM process.    
   
 

III.  SIMULATIONS RESULTS ANALYSIS 
 

A.   Crop model 
 
The original data were issued from experiments carried out on a silty soil in Belgium, with a 

wheat crop (Triticum aestivum L., cultivar Julius), during 2 consecutive years, the crop seasons 2008-09 
and 2009-10. The experimental blocks were prepared on two soil types (loamy and sandy loam), 
corresponding to the agro-environmental conditions of the Hesbaye region in Belgium. The 
measurements were the results of four repetitions by date, nitrogen level, soil type and crop season. Each 
repetition was performed on a small block (2 m × 6 m) within the original experiment as a complete 
randomised block distribution, spread over the field within each soil type, to ensure measurement 
independence. A wireless microsensor network (eKo pro series system, Crossbow) was used to 
continuously characterize the soil (water content, suction, temperature at two depths: 20 and 40 cm) and 
the atmosphere (radiation, temperature, relative humidity, wind speed) within the vegetation. Pluviometry 
data were also acquired in the experimental field. The plant characteristics (LAI and biomass) were also 
measured using reference techniques at regular intervals (2 weeks) along the crop seasons. The 
measurements were performed since the middle of February (around Julian day 410) till harvest. During 
the season 2008-2009, yields were quite high and close to the optimum of the cultivar. This was mainly 
explained by the good weather conditions and a sufficient nitrogen nutrition level. The season 2009-2010 
was known to induce deep water stresses, and thus characterized by yield losses.  

 
The model for which the methods were tested is Mini-STICS model. The equations are presented 

in [33], and the parameters given at Table 1. The dynamic equations indicate how each state variable 
evolves from one day to the next as a function of the current values of the state variables, of the 
explanatory variables, and of the parameters value. Encoding these equations over time allows one to 
eliminate the intermediate values of the state variables and relate the state variables at any time to the 
explanatory variables on each day.  
 

In the first step we are interested to compare the estimation performances of EKF, UKF, PF and 
VF in estimating three state variables of the mini-STICS model: the leaf-area index LAI, the volumetric 
water content of the layer 1, HUR1 and the volumetric water content of the layer 2, HUR2. Based on the 
model equations described in [33], the mathematical model of the LAI and soil moisture (called in the rest 
of the document LSM model) is given by: 
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Where � is the time, ��:  are the corresponding model functions, and � is the vector of parameters driving 
the simulations (Table 1).  LAI is the leaf area index and HUR1 (resp. HUR2) is the volumetric water 
content of the layer 1 (resp. the layer 2). Discretizing the model (15) using a sampling interval of Δt (one 
day), it can be written as, 
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where w*∈+�,…, .
*  is a process Gaussian noise with zero mean and known variance	σ

01
� .  

 
Table 1. Model parameters ([34]) 
 

Parameter name Meaning True value 
ADENS (-) Parameter of compensation between stem number and plant 

density 
−0.8 

BDENS (plants m−2) Maximum density above which there is competition between 
plants 

1.25 

CROIRAC (cm degree − 
day−1) 

Growth rate of the root front 0.25 

DLAIMAX (m 2 leaves m−2 
soil degreedays−1) 

Maximum rate of the setting up of LAI 0.0078 

EXTIN (-) Extinction coefficient of photosynthetic active radiation in the 
canopy 

0.9 

KMAX (-) Maximum crop coefficient for water requirements 1.2 
LVOPT (cm root cm−3 s) Optimum root density 0.5 
PSISTO (bars) Absolute value of the potential of stomatal closing 10 
PSISTURG (bars) Absolute value of the potential of the beginning of decrease in the 

cellular extension 
4 

RAY ON (cm) Average radius of roots 0.02 
TCMIN (°C) Minimum temperature of growth 6 
TCOPT (°C) Optimum temperature of growth 32 
ZPENTE (cm) Depth where the root density is 1/2 of the surface root density for 

the reference profile 
120 

ZPRLIM (cm) Maximum depth of the root profile for the reference profile 150 
 

 
B.  Sampling data generation 

 
To obtain original dynamic data, the model was first used to simulate the temporal 

responses	LAI5, HUR15, HUR25 on basis of the recorded climatic variables of the crop season “2008-
2009”. The sampling time used for discretization was 1 day. 

 
Moreover, to characterize the ability of the different approaches to estimate both the states and the 

parameters at same time, “true” parameter values were chosen (Table 1). The advantage of working by 
simulation rather than on real data is that the true parameter values are known. It is thus possible to 
calculate the quality of the estimated parameters and the predictive quality of the adjusted model for each 
method. The drawback is that the generality of the results is hard to know. The results may depend on the 
details of the model, on the way the data are generated and on the specific data that are used. The 
simulated values, assumed to be noise free, are shown in Figure 1. The evolution of LAI during the 



wheat’s lifecycle presents the three expected phases, growth, stability, and senescence.  Daily variations 
of shallow ground water show fluctuations that were damped in the subsoil layer 30 – 50 cm. 

 
These simulated states were then contaminated with zero mean Gaussian errors, i.e., the 

measurement noise v5(�~	N�0, σ;
��,	 where σ;

� = 0.1. 
 

 

Figure 1 Simulated LSM data used in estimation: state variables (=>? leaf area index, @ABC 
volumetric water content of the layer 1; @ABD volumetric water content of the layer 2). 
 

C.  Comparative Study 1: Estimation of State Variables from Noisy Measurements 
 
In the first scenario, it is assumed that the model parameters are known and the objective is to 

estimate only the state variables, LAI, HUR1, and HUR2.  Therefore, we consider the state vector that we 
wish to estimate as: 

]21[ kkkkk HURHURLAIxz ==         (18) 

 
Eventually, to perform comparison between the techniques, the estimation root mean square errors  
(RMSE) criteria are used and calculated on the states (with respect to the noise free data) 
 

))ˆ(( 2xxERMSE −=                                   (19) 

 
where x  (resp.x̂) is the true parameter/state (resp. the estimated parameter/state). 

The simulation results of estimating the three states kLAI , kHUR1  and kHUR2  using EKF, 

UKF, PF, and VF are shown in Figures 2(a,b,c), Figures 2(d,e,f), Figures 2(g,h,i), Figures 2(j,k,l) 
respectively. Also, the estimation root mean square errors (RMSE) for the estimated states are presented 
in Table 2. It can be observed from Figure 3 and Table 2 that EKF resulted in the worst performance of all 
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estimation techniques, which is expected due to the limited ability of EKF to accurately estimate the mean 
and covariance matrix of the estimated states through lineralization of the nonlinear process model. The 
results also show that the PF provides a significant improvement over the UKF. This is because the 
covariance is propagated through linearization of the underlying non-linear model, when the state 
transition and observation models are highly non-linear. VF provides a significant improvement over the 
PF, which is due to the fact that the VF yields an optimal choice of the sampling distribution,

),( 1 kkk yp −αα , by minimizing a KL divergence criterion that also utilizes the observed data ky . 

 

 
Figure 2 Estimation of state variables using various state estimation techniques (comparative study 1). 
 
 

Table 2. Root mean square errors (RMSE) of estimated states 
 

Technique                RMSE                         Mean at steady 
state 

 LAI 
m2leavesm- 

2soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

EKF 0. 0634 0. 0598 0. 0297 −0.8 
UKF 0. 0612 0. 0517 0. 0201 −0.8 
PF 0. 0358 0. 0347 0. 0251 −0.8 
VF 0. 0190 0. 0187 0. 0122 −0.8 

 
 
 

 

 



 

Figure 3 Histogram showing the RMSE of estimated states using EKF, UKF, PF and VF 
 

D. Comparative Study 2: Simultaneous Estimation of State Variables and Model 
Parameters 
 
The model (17) assumes that the parameters are fixed and/or have been determined previously. 

However, the model involves several parameters that are usually not exactly known, or that have to be 
estimated. Estimating these parameters, to completely define the model, usually requires several 
experiment setups, which can be expensive and challenging in practice. In a second step, in this work, we 
propose to use a Bayesian approach that can considerably simplify the task of modeling compared to the 
conventional experimentally intensive methods. Let’s thus consider that some of the parameters have to 
be estimated to improve the simulations, by example the ADENS, DLAIMAX, PSISTURG, EXTIN, and 
LVOPT parameters. ADENS is the parameter of compensation between stem number and plant density, 
DLAIMAX is the maximum rate of the setting up of LAI, PSISTURG is the absolute value of the potential 
of the beginning of decrease in the cellular extension, EXTIN is the extinction coefficient of 
photosynthetic active radiation in the canopy, and LVOPT is the optimum root density. To estimate these 
parameters, the following equations that describe their evolution are also needed: 
 

1
11 −− += kkk ADENSADENS γ  

 
2

11 −− += kkk DLAIMAXDLAIMAX γ  

 
3

11 −− += kkk PSISTURGPSISTURG γ  



4
11 −− += kkk EXTINEXTIN γ   

5
11 −− += kkk LVOPTLVOPT γ       (20) 

where  j
j }5,...,1{∈γ is a process Gaussian noise with zero mean and known variance 2

γσ . Combining (19) and 

(20), one obtains: 
 

�� ∶ 	 
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�
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�

�P ∶ K
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�

�S ∶ TN�NU��V$ = TN�NU��V$(� + O$(�
 

�W ∶ LRU�M$ = LRU�M$(� + O$(�
J

�X ∶ 
YZTU$ = 
YZTU$(� + O$(�
P

     (21) 

 
where f5∈+�,…,X.  are some nonlinear functions and where		w = �w�, w�, w �

\ and  γ = �γ�, γ�, γ �
\ are 

respectively the measurement and process noise vector, which quantify randomness at both levels. In 
other words, we are forming the augmented state:  z5 = �x5, θ5�

\ which is the vector that we wish to 
estimate. It can be given by a 8 by 1 matrix: 
 

_$�1, : � 		→ 
��$
_$�2, : � 		→ ���1$
_$�3, : � 	→ ���2$
�$�1, : � 		→ �KLMN$
�$�2, : � 		→ K
��Q�R$
�$�3, : � 		→ TN�NU��V$
�$�4, : � 		→ LRU�M$
�$�5, : � 		→ 
YZTU$

      (22) 

 

In the following, we denote Twwww )( 321= , and T)( 54321 γγγγγγ = , respectively the 

measurement and process noise vectors, which quantify (i) errors in the measurements and (ii) 
randomness in the process. The idea here is that, if a dynamic model structure is available, the model 
parameters can be estimated using one of state estimation technique, namely EKF, UKF, PF, and VF. To 
characterize the ability of the different approaches to estimate both at same time, the states and the 
parameters, we have chosen true parameter values and then tested each technique to see how well it could 
retrieve these true parameter values given the data. It was thus possible to calculate the quality of the 
estimated parameters and the predictive quality of the adjusted model for each method. 

 
To go further in the analysis, the effect of the number estimated parameters on the estimation 

performances are investigated. Five cases summarized below are considered. In all cases, it is assumed 
that three states ((LAI, HUR1, and HUR2)) are measured. 
 

i) Case 1: the three states (LAI, HUR1 and	HUR2) along with the parameter ADENS	be 
estimated. 



ii)  Case 2: the three states (LAI, HUR1 and	HUR2) along with the parameters ADENS,		and  
DLAIMAX  will be estimated. 

iii)  Case 3: the three states (LAI, HUR1 and	HUR2) along with the parameters ADENS, DLAIMAX  
and PSISTURG  will be estimated. 

iv) Case 4: the three states (LAI, HUR1 and	HUR2) along with the parameters ADENS,
DLAIMAX, PSISTURG,	and EXTIN  will be estimated. 

v) Case 5: the three states (LAI, HUR1 and	HUR2) along with the parameters	ADENS,
DLAIMAX, PSISTURG, EXTIN and LVOPT  will be estimated. 

 
Here, we are interested in examining the effect of the number of estimated parameters on the 

estimation performances of EKF, UKF, PF and VF and in estimating the states and parameters of the 
LSM process model, during the first crop season 2008-2009 (unstressed growth data). The estimation of 
the state variables and parameter(s) for these five cases were performed using the four state estimation 
techniques, EKF, UKF, PF, and VF, and the estimation results for the model parameters using these 
techniques are shown in Figures 4, 5, 6, and 7, respectively. For example, Figure 3(a) shows the 
estimation of the parameter DLAIMAX in case 1, Figures 4(b,c) show the estimation of the parameters 
DLAIMAX and ADENS in case 2, and Figures 4(d,e,f) show the estimation of all five parameters 
ADENS, DLAIMAX, PSISTURG, EXT IN, and LV OPT in case 5. Also, Tables 3 to 7 compare the 
performances of the four estimation techniques for the five cases. For example, for case 1, Table 3 
compares the estimation mean square errors for the three state variables LAI, HUR1 and HUR2 (with 
respect to the noise-free data) and the mean of the estimated parameter DLAIMAX at steady state (i.e., 
after convergence of parameter(s)). Tables 4 to 7 present similar comparisons for cases 2-5, respectively. 
Moreover, Figures 8 to 12 present histograms comparing the estimation RMSE for the three state 
variables (LAI, HUR1 and HUR2), respectively, using the various state estimation techniques. 
 

It can be seen from the results presented in Tables 3-7 that in all cases, the PF outperforms UKF 
and EKF (i.e., provides smaller RMSE for the state variables), and that the VF shows a significant 
improvement over all other techniques. These results confirm those obtained in the first comparative 
study, where only the state variables are estimated. The advantages of the VF over the PF (and the PF 
over the the UKF and EKF) can also be seen through their abilities to estimate the model parameters. For 
example, EKF could perfectly estimate one parameter in case 1 (see Figure 4(a)), but it took longer to 
estimate a second parameter in case 2 (see Figures 4(b,c)), and it could not converge for the third 
parameter in case 3 (see Figure 4(d,e,f)), where it is used to estimate three parameters. While, UKF could 
estimate one parameter in case 1 (see Figure 5(a)) and two parameters in case 2 (see Figure 5(b,c)), but it 
took longer to estimate a third parameter in case 3 (see Figures 5(d,e,f)), and it could not converge for the 
fourth and the fifth parameters in cases 4 and 5 (see Figures 5(g,h,i,j) and 5(k,l,m,n,p)), where it is used to 
estimate all five parameters. The PF, on the other hand, could estimate all parameters in all cases 1-5, 
even though it took longer to converge in case 5, where all five parameters are estimated (see Figure 6). 
The VF, however, could estimate all parameters in all five cases (see Figure 7), and converged faster than 
all other techniques. These advantages of the VF are due to the fact it provides an optimum choice of the 
sampling distribution used to approximate the posterior density function, which also accounts for the 
observed data. 

 
The results also show that the number of estimated parameters affect the estimation accuracy of 

the estimated state variables. In other words, for all estimation techniques, the estimation RMSE of LAI, 
HUR1 and HUR2 increases from the first comparative study (where only the state variables are 
estimated) to case 1 (where only one parameter, DLAIMAX, is estimated) to case 5 (where all five 
parameters, ADENS, DLAIMAX, PSISTURG, EXT IN, and LV OPT , are estimated). For example, the 
RMSEs obtained using EKF for LAI in the first comparative study and cases 1-5 of the second 
comparative study are 0.0634, 0.0814, 0.105, 0.131, 0.187 and 0.221, respectively, which increase as the 



number of estimated parameters increases (refer to Tables 3-7). This observation is valid for the other 
state variables HUR1 and HUR2 and for all other estimation techniques, UKF, PF and VF. 
 
 

 
Figure 4 Estimation of the LSM model parameters using EKF for all cases - case 1: (a), case 2: (b),(c), 
case 3: (d),(e),(f), case 4: (g),(h),(i),(j), case 5: (k),(l),(m),(n,),(p). 
 

 
 



Figure 5 Estimation of the LSM model parameters using UKF for all cases - case 1: (a), case 2: (b),(c), 
case 3: (d),(e),(f), case 4: (g),(h),(i),(j), case 5: (k),(l),(m),(n,),(p). 
 

 
 
Figure 6 Estimation of the LSM model parameters using PF for all cases - case 1: (a), case 2: (b),(c), 
case 3: (d),(e),(f), case 4: (g),(h),(i),(j), case 5: (k),(l),(m),(n,),(p). 
 

 



Figure 7 Estimation of the LSM model parameters using VF for all cases - case 1: (a), case 2: (b),(c), 
case 3: (d),(e),(f), case 4: (g),(h),(i),(j), case 5: (k),(l),(m),(n,),(p). 

Table 3. Root mean square errors (RMSE) of estimated states and mean of estimated parameter - case 1 
 
 

Technique                           RMSE                                                 Mean at steady state 
 LAI 

m2leaves      m-2 soil 
HUR1 

(%) 
HUR2 

(%) 
ADENS 

(-) 

EKF 0. 0814 0. 0841 0. 0411 −0.8 
UKF 0. 0758 0. 0798 0. 0358 −0.8 
PF 0. 0511 0. 0581 0. 0315 −0.8 
VF 0. 0315 0. 0317 0. 0278 −0.8 

 
 

Table 4. Root mean square errors of estimated states and mean of estimated parameters - case 2 
 

  
 

Table 5.  Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 3 
 

Technique 
 

RMSE 
 

Mean at steady state 
 

 LAI 
m2leavesm- 

2soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

DLAIMAX 
(m2 leaves m−2 soil 

degree days−1) 

PSISTURG 
(bars) 

EKF 0. 131 0. 142 0. 061 −0.8 0.0078 Did not 
converge 
(DNC) 

UKF 0. 125 0. 134 0. 054 −0.8 0.0078 4 
PF 0. 117 0. 1023 0. 045 −0.8 0.0078 4 
VF 0. 094 0. 0758 0. 0354 −0.8 0.0078 4 

 

 

Table 6.  Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 4 
 

Technique 
 

RMSE 
 

Mean at steady state 
 

 LAI 
m2leavesm- 

2soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

DLAIMAX 
(m2 leaves m−2 soil 

degree days−1) 

PSISTURG 
(bars) 

EXTIN 
(bars) 

EKF 0. 187 0. 202 0. 112 −0.8 0.0078 DNC DNC 
UKF 0. 165 0. 189 0. 092 −0.8 0.0078 DNC DNC 
PF 0. 141 0. 149 0. 085 −0.8 0.0078 4 0.9 
VF 0. 113 0. 093 0. 0614 −0.8 0.0078 4 0.9 

 

 
Technique 

 
RMSE 

 
Mean at steady state 

 LAI 
m2 leaves 
m-2 soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

DLAIMAX 
(m2leavesm−2 

soildegreedays−1) 

EKF 0. 105 0. 119 0. 0493 −0.8 0.0078 
UKF 0. 0944 0. 104 0. 0423 −0.8 0.0078 
PF 0. 0798 0. 091 0. 0412 −0.8 0.0078 
VF 0. 0548 0. 0651 0. 0298 −0.8 0.0078 



 
Table 7.  Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 5 

 
Technique 

 
RMSE 

 
Mean at steady state 

 

 LAI 
m2leavesm- 

2soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

DLAIMAX 
(m2 leaves m−2 soil 

degree days−1) 

PSISTURG 
(bars) 

EXTIN 
(bars) 

LVOPT 
(-) 

EKF 0. 221 0. 235 0. 178 −0.8 0.0078 DNC DNC DNC 
UKF 0. 204 0. 214 0. 196 −0.8 0.0078 DNC DNC DNC 
PF 0. 149 0. 158 0. 103 −0.8 0.0078 4 0.9 0.5 
VF 0. 125 0. 102 0. 096 −0.8 0.0078 4 0.9 0.5 

 

 

 

Figure 8 Histogram showing the RMSE of estimated states for case 1 using EKF, UKF, PF and VF 
 



 
Figure 9 Histogram showing the RMSE of estimated states for case 2 using EKF, UKF, PF and VF 
 

 
Figure 10 Histogram showing the RMSE of estimated states for case 3 using EKF, UKF, PF and VF 
 



 
Figure 11 Histogram showing the RMSE of estimated states for case 4 using EKF, UKF, PF and VF 
 
 
 
 

 
Figure 12 Histogram showing the RMSE of estimated states for case 5 using EKF, UKF, PF and VF 
 



E.  The effect of driving variables 
 

Eventually, to achieve the research, the effect of the driving variables are determined. The five 
studied cases presented at step 2 are applied on the climatic weather database of the crop season 2009- 
2010. This procedure was furthermore developed since the PSISTURG parameter was optimised at cases 
2 and 3, while the climatic season 2008-2009 was known not to induce stresses. We applied the different  
algorithms described above, EKF, UKF, PF and VF to simulate the responses of LAI, HUR1 and HUR2 
as functions of time, in the second crop season 2009-2010 (season with deep water stresses). And 
respectively the above techniques are used for estimating the five model parameters, ADENS, 
DLAIMAX, PSISTURG, EXTIN, and LVOPT. From Tables 8 to 12, we can show that variational 
Bayesian filtering algorithm outperforms the classical algorithms, and demonstrate the performance and 
the good behavior of the proposed algorithm when the growing season is varied. Moreover, Figures 13 to 
17 present histograms comparing the estimation RMSE for the three state variables (LAI, HUR1 and 
HUR2), respectively, using the four state estimation techniques EKF, UKF, PF and VF. 

 
Table 8.  Root mean square errors (RMSE) of estimated states and mean of estimated parameter - case 1 
 

Technique                RMSE                         Mean at steady 
state 

 LAI 
m2leavesm- 

2soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

EKF 0. 0939 0. 0901 0. 0461 −0.8 
UKF 0. 0714 0. 0745 0. 0387 −0.8 
PF 0. 0542 0. 0531 0. 0342 −0.8 
VF 0. 0341 0. 0357 0. 0232 −0.8 

 

Table 9. Root mean square errors of estimated states and mean of estimated parameters - case 2 
          
                       Technique                          RMSE                                    Mean at steady state 

 LAI 
m2leavesm- 
2soil 

HUR1 
         (%) 

HUR2 
     (%) 

ADENS 
      (-) 

DLAIMAX 
(m2 leaves m−2 soil 
degree days−1) 

EKF  0. 1502  0. 1589 0. 0723 −0.8 0.0078 
UKF  0. 122  0. 1325 0. 0618 −0.8 0.0078 
PF  0. 0988       0. 0957 0. 0592 −0.8 0.0078 
VF  0. 0638       0. 0557 0. 0364 −0.8 0.0078 

 
 
Table 10.  Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 3 

 
Technique 

 
                     RMSE 

 
           Mean at steady state 

 LAI 
m2leavesm- 
2soil 

HUR1 
         (%) 

HUR2 
     (%) 

ADENS 
      (-) 

DLAIMAX 
(m2 leaves m−2 soil 
degree days−1) 

PSISTURG 
           (bars) 

EKF  0. 213  0. 204 0. 141 −0.8 0.0078 DNC 
UKF  0. 183  0. 175 0. 115 −0.8 0.0078 4 
PF  0. 1431       0. 1433 0. 0945 −0.8 0.0078 4 
VF  0. 0847       0. 0859 0. 0594 −0.8 0.0078 4 

 

 



Table 11.  Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 4 
 

Technique 
 

RMSE 
 

Mean at steady state 
 

 LAI 
m2leavesm- 

2soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

DLAIMAX 
(m2 leaves m−2 soil 

degree days−1) 

PSISTURG 
(bars) 

EXTIN 
(bars) 

EKF 0. 2161 0. 235 0. 155 −0.8 0.0078 DNC DNC 
UKF 0. 191 0. 195 0. 124 −0.8 0.0078 DNC DNC 
PF 0. 1435 0. 1454 0. 096 −0.8 0.0078 4 0.9 
VF 0. 0853 0. 087 0. 070 −0.8 0.0078 4 0.9 

 
Table 12.  Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 5 

 
Technique 

 
RMSE 

 
Mean at steady state 

 

 LAI 
m2leavesm- 

2soil 

HUR1 
(%) 

HUR2 
(%) 

ADENS 
(-) 

DLAIMAX 
(m2 leaves m−2 soil 

degree days−1) 

PSISTURG 
(bars) 

EXTIN 
(bars) 

LVOPT 
(-) 

EKF 0. 226    0. 255 0. 168 −0.8 0.0078 DNC DNC DNC 
UKF 0. 196    0. 212 0. 135 −0.8 0.0078 DNC DNC DNC 
PF 0. 145    0. 1464 0. 0975 −0.8 0.0078 4 0.9 0.5 
VF 0.085    0. 0902 0. 0814 −0.8 0.0078 4 0.9 0.5 

 

 

 

Figure 13 Histogram showing the RMSE of estimated states for case 1 using EKF, UKF, PF and VF 
 

 



 
Figure 14 Histogram showing the RMSE of estimated states for case 2 using EKF, UKF, PF and VF 
 
 

 
Figure 15 Histogram showing the RMSE of estimated states for case 3 using EKF, UKF, PF and VF 

 



 

 
Figure 16 Histogram showing the RMSE of estimated states for case 4 using EKF, UKF, PF and VF 
 
 

 
Figure 17 Histogram showing the RMSE of estimated states for case 5 using EKF, UKF, PF and VF 
 



 
 

IV. CONCLUSIONS 
 

In this chapter, state estimation techniques are used to predict simultaneously three state variates 
(Leaf area index (LAI) and soil moisture of two soil layers, HUR1 and HUR2) for a winter wheat crop 
model and several parameters. Various state estimation techniques, which include the extended Kalman 
filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and variational Bayesian filter (VF) are 
compared as they are used to achieve this objective.   

 
These techniques (i.e., EKF, UKF, PF and VF) have been extended to better handle nonlinear and 

non-Gaussian processes with no a priori information on the state, by utilizing a time-varying assumption 
of statistical parameters. The time-varying assumption of statistical parameters is assumed here to further 
capture the uncertainty of the state distribution.  

 
Two comparative studies have been conducted to compare the estimation performances of these 

four estimation techniques. In the first comparative study, EKF, UKF, PF and VF are used to estimate the 
three state variables, LAI, HUR1, and HUR2. In the second comparative study, the state variables and the 
model parameters are simultaneously estimated, and the effect of number of estimated parameters on the 
performances of the four estimation techniques is investigated.  

 
The simulation results of both comparative studies show that the PF provides a higher accuracy 

than the EKF and the UKF due to the limited ability of the EKF and the UKF to deal with highly 
nonlinear process models. The results also show that the VF provides a significant improvement over the 
PF. This is because, unlike the PF which depends on the choice of sampling distribution used to estimate 
the posterior distribution, the VF yields an optimum choice of the sampling distribution, which also 
utilizes the observed data. The results of the second comparative study show that, for all techniques, 
estimating more model parameters affects the estimation accuracy as well as the convergence of the 
estimated states and parameters. The VF, however, still provides advantages over other methods with 
respect to estimation accuracy as well convergence. 
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KEY TERMS AND DEFINITIONS  
 
States and parameters estimation:  
State and parameter estimation is the process of obtaining the estimators of state variables and model 

parameters based on a dataset. 

 
Extended Kalman filter (EKF):  
EKF is an estimation technique that is applicable to nonlinear and non-Gaussian models. As the Kalman 
filter is applicable to linear systems, the EKF can be viewed as an extension of the Kalman filter that is 
applied to a linearized version of the nonlinear model.  
 
Unscented Kalman filter (UKF):  
UKF is an estimation technique that uses a deterministic sampling technique known as the unscented 
transform to approximate the mean and the covariance of the state and parameter vector.  
 
 
Particle filter (PF):  
PF, which is based on Bayesian estimation, is a sequential Monte Carlo state estimation method for 
nonlinear and non-Gaussian systems.  The EKF and UKF algorithms do not always provide a satisfactory 
performance, especially for highly nonlinear processes as model linearization does not necessarily 
provide good estimates of the mean of the state vector and the covariance matrix of the estimation error, 
which are used in state estimation. These issues are addressed by the PF. 
 
Variational filter (VF):  
VF, which is based on Bayesian estimation, is state estimation method for nonlinear and non-Gaussian 
systems. It  has been proposed recently to enhance state estimation because VF yields an optimal choice 
of the sampling distribution by minimizing a Kullback-Leibler (KL) divergence criterion. In fact, 
variational calculus leads to a simple Gaussian sampling distribution whose parameters (which are 
estimated iteratively) also utilize the observed data, which provides more accurate and computationally 
efficient computation of the posterior distribution. 
 
Environmental data:  
Environmental data is that which is based on the measurement of environmental pressures, the state of the 
environment and the impacts on ecosystems. 
 
Leaf Area Index: 
Leaf Area Index is a method of measurement of leaf area in a given section of ground area expressed in 
terms of half the square meters of leaf per square meter of ground. 
 
Soil moisture: 
Soil moisture is the volumetric water content in the soil. 
 


