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ABSTRACT

The problem of state/parameter estimation represankey issue in crop models which are
nonlinear, non-Gaussian and include a large nunabgrarameters. The prediction errors are often
important due to uncertainties in the equatiors,itiput variables, and the parameters. The measmtem
needed to run the model (input data), to perforiibregion and validation are sometimes not numerous
or known with some uncertainty.

In these cases, estimating the state variablesomlandarameters from easily obtained
measurements can be extremely useful. In this weekaddress the problem of modeling and prediction
of leaf area index and soil moisture (LSM) usingtest estimation. The performances of various
conventional and state-of-the-art state estimat@mhniques are compared when they are utilized to
achieve this objective. These techniques includeetktended Kalman filter (EKF), unscented Kalman
filter (UKF), particle filter (PF), and the morecently developed technique variational Bayesiaefil
(VF).

The objective of this work is to extend the statd parameter estimation techniques (i.e., EKF,
UKF, PF and VF) to better handle nonlinear and @Gamssian processes without a priori state
information, by utilizing a time-varying assumptiofstatistical parameters. In this case, the stattor

to be estimated, at any instankis assumed to follow a Gaussian model, where tpeation, and

the covariance matrix, are both random. The randomness of the expectatidrthe covariance of the
state/parameter vector are assumed here to furmure the uncertainty of the state distributione
practical choice of these distributions can be agsian distribution for the expectation and a multi
dimensional Wishart distribution for the covariamoatrix. The assumption of random mean and random
covariance of the state leads to a probabilityrithistion covering a wide range of tail behaviordieh
allows discrete jumps in the state variablgs,



The results of the comparative studies show ttePth provides a higher accuracy than the EKF,
which is due to the limited ability of the EKF tardle highly nonlinear processes. The results stisov
that the PF provides a significant improvement otle UKF. This is because the covariance is
propagated through linearization of the underlyimgn-linear model, when the state transition and
observation models are highly non-linear. The tssalso indicate that the VF provides a significant
improvement over the PF because, unlike the PFhavtiépends on the choice of sampling distribution
used to estimate the posterior distribution, theyidids an optimum choice of the sampling distridnt
which also accounts for the observed data. Thénadiglata were issued from experiments carriecoout
a silty soil in Belgium, with a wheat crop, durihgo consecutive years, the seasons 2008-09 and 2009
10.

I. INTRODUCTION

Parameter and states estimation in nonlinear emviemtal systems is an important issue in
diagnosis, measurement and modeling. However, duthd difficulty of, or cost associated with,
obtaining these measurements, state and/or panaestirmators are often used to overcome this pnoble
Crop models such as EPIC [1], WOFOST [2], DAISY[STICS [4], and SALUS [5] are dynamic non-
linear models that describe the growth and devedopirof a crop interacting with environmental fastor
(soil and climate) and agricultural practices (cspgcies, tillage type, fertilizer amount, etcThey are
developed to predict crop yield and quality or t@imize the farming practices in order to satisfy
environmental objectives, as the reduction of gigo lixiviation. More recently, crop models are dise
simulate the effects of climate changes on thecatjural production. Nevertheless, the predictioors
of these models may be important due to uncergsinti the estimates of initial values of the staites
input data, in the parameters, and in the equatibhe measurements needed to run the model are
sometimes not numerous, whereas the field spati#hility and the climatic temporal fluctuationgeo
the field may be high. The degree of accuracy é&efore difficult to estimate, apart from numerous
repetitions of measurements. For these reasongriidem of state/parameter estimation represents a
key issue in such nonlinear and non-Gaussian cageia including a large number of parameters, while
measurement noise exists in the data.

Several state estimation techniques have beenamatland used in practice. These techniques
include the extended Kalman filter (EKF), unsceritadiman filter (UKF), particle filter (PF), and n®r
recently the variational Bayesian filter (VF). Ttlassical Kalman Filter (KF) was developed in tBé0s
[6], and has been widely used in various engingesimd science applications, including communication
control, machine learning, neuroscience, and mahgrs. In the case where the model describing the
system is assumed to be linear and Gaussian, theré{kdes an optimal solution [7, 8, 9, 10]. The KF
has also been formulated in the context of TakagjeBo fuzzy systems to handle nonlinear models,
which can be described as a convex set of mullipbar models [11, 12, 13]. It is known that the ISF
computationally efficient; however, it is limitedythe non-universal linear and Gaussian modeling
assumptions. To relax these assumptions, the eedeldiman filter (EKF) [7, 8, 14, 15, 16] and the
unscented Kalman filter (UKF) [17, 18, 19] have mateveloped. In extended Kalman filtering, the
model describing the system is linearized at ewane sample (in order to estimate the mean and
covariance matrix of the state vector), and thesntlodel is assumed to be differentiable. Unfortelgat
for highly nonlinear or complex models, the EKF slo®t usually provide a satisfactory performanae. O
the other hand, instead of linearizing the modehgproximate the mean and covariance matrix of the
state vector, the UKF uses the unscented transfanmis improve the approximation of these moments.
In the unscented transformation, a set of samplallefl sigma points) are selected and propagated
through the nonlinear model, which provides moreugate approximations of the mean and covariance
matrix of the state vector, and thus more accuataiie estimation.



Other state estimation techniques use a Bayes@mefvork to estimate the state and/or
parameter vector [20]. This approach relies on aging the probability distribution of the unobsedve
state given a sequence of the observed data iti@dth a state evolution model. Consider an oleskrv
data set y which is generated from a model defibgda set of unknown state variables and/or or
parameters z. The beliefs about the data are coehplexpressed via the parametric probabilistic
observation mode;b(y(z). The learning on uncertainty or randomness of acgss is solved by

constructing a distributiop(jy), called the posterior distribution, which quam#fiour belief about the
system after obtaining the measurements. Accordiidpyes theorem, the posterior can be expresses as

Hay)- P(yz)P(2)
P(y)
where P(){Z) is the conditional distribution of the data giwe vector z, which is called the likelihood

function, P(z) is the prior distribution which quantifies our igél about z before obtaining the
measurements, anf(y)is the distribution of the data. Unfortunately, foost nonlinear systems and

non-Gaussian noise observations, closed-form adoadypressions of the posterior distribution of the
state vector are untractable ([21]). To overcohig drawback, a nonparametric Monte Carlo sampling
based method called Particle Filtering (PF) hasnbm®posed by Doucet and Tadic [25]. The latter
method presents several advantages since: (iniacaount for the constraint of small number ofadat
samples, (i) the online update of the filteringstdbution and its compression are simultaneously
performed, and (iii) it yields an optimal choice the sampling distribution over the state varidtye
minimizing the Kullback-Leibler (KL) divergence.

Recently, a variational filtering (VF) has been gweed for solving the nonlinear parameter
estimation problem encountered in crop models. Marset al. ([35,36]) used a Bayesian sampling
method for modeling and prediction of nonlinear ismvmental system, where the nonlinear observed
system was assumed to progress according to alplieba state space model. In this investigatite
state vector to be estimated (at any time instaa) assumed to follow a Gaussian model, where the
expectation and the covariance matrix are constants

Each of the above state estimation techniquesthasiVantages and disadvantages. For example,
the variational filter can be applied to large paeter spaces, has better convergence propertigdsan
easier to implement than the particle filter. Boftthem can provide improved accuracy over the EKF.

The general objective of this chapter is compaeeperformances of the EKF, UKF, PF, and VF
when used to monitor and model an environmentatge® called LMS, which represents the temporal
evolution of three state variables implied in theeat crop growth and development: the leaf-areaxind
(LAI), the soil moisture of the topsoil layer (0-8én) (HUR1), and the soil moisture of the subsaylerr
(30-50 cm) (HUR2). This comparative study will essé¢he accuracy and convergence of the proposed
techniques, as well as the effect of the size efp@rameter space (i.e., number of estimated p&eeshe
on the performances of the estimation techniquemeSpractical challenges, however, can affect the
accuracy of estimated states and/or parametergdeBe®e existence of many parameters, it is nepgssa
to consider the presence of noise in the measwat] dnd the restricted availability of some meadur
data samples. Consequently, the objectives of chépter is two-fold: i) we study the accuracy and
convergence of EKF, UKF, PF, and VF techniquesyé)investigate the effect of the above challenges
on the performances of these techniques.



The rest of the chapter is organized as follows.Sattion I, a statement of the problem
addressed in this chapter is presented, followeddsgription of variational Bayesian filtering. Then
Section lll, the performances of the various stgémation techniques are compared through their
application to estimate the state variables andeanpdrameters of the LSM process. Finally, some
concluding remarks are presented in Section IV.

Il. MATERIAL AND METHODS

A. Problem Formulation

Here, the estimation problem of interest is forrtediafor a general system model. Let a nonlinear
state space model be described as follows:

{X= g(xu,6,w)

y=1(x,u,8,v) @

where,x € R" is a vector of the state variablesc RP is a vector of the input variables (which can be
changed as desired),€ RY is an unknown parameter vectgre R™ is a vector of the measured

variables, gand | are nonlinear differentiable functions, and € R® andv € R™ are process and

measurement noise, which quantify randomness in gtoeess and errors in the measurements,
respectively.

Discretizing the state space model (1), the disaredel can be written as follows:

{Xk: f(Xk_l,Uk_l,Hk_lywk—l), (2)

Y= h(xk’uk’gk’vk)

which describes the state variables at some tiepe(kt) in terms of their values at a previous time step

(k=1). Note that in equation (2). The process and nreasent noise vectors have the following
properties:

E[V\L]ZO, E[ww |= Q E[vk]:o’ E[ vy |= R
The function f is used to predict the value of the state vedtepme time steffk) given its value at the
previous time steigk —1) , and the functiorh relates the measured vec(y, ) to the state vectofx, )
at the same time step. Also, defining the augnieméetor, u, is the vector of input variabled), is a
parameter vector (assumed to be knowy), is the vector of the measured variableg,and v, are
respectively model and measurement noise vectodsthee matricesQ), andR, , represent the covariance
matrices of the process and measurement noisersgotepectively. We assume that the error tenps
andv, have normal distributions with zero expectatiory #rat they are mutually independent.

Since we are interested to estimate the state vectas well as the parameter vedr, let's assume
that the parameter vector is described by thevdtig model:

8 =601t Vi 3)



where ), _, is white noise. In other words, the parameterorentodel (3) corresponds to a stationary

process, with an identity transition matrix, driviey white noise. We can define a new state vettar t
augments the two vectors together as follows:

ek Hk—l + yk—l (4)

where z is assumed to follow a Gaussian modelzs- N(t,,4A,) , and where at any timk the
expectation, and the covariance matrix_are both random. Also, defining the augmentedorect

Ea = {Wk_l}
yk—l (5)
the model (2) can be written as:
z=0(24, Uy &cn)
Yo =0(z U, %) ©)

B. Time-variant evolution systems

Instead of the kinematic parametric model [28, 29] which is usually used in estimation
problems, we employ a time-variant evolution sysdmVES) [31]. This model is more appropriate to
practical non- linear and non-gaussian situatiohgre no a priori information on the state value is

available.The state variablg at instantk is assumed to follow a Gaussian model, wherextpeaation

M, and the precision matriX, are both random. Gaussian distribution for theeetqtion and Whishart
distribution for the precision matrix form a praeti choice for the filtering implementation. Thaldén
statez, is extended to an augmented state= (z,, 14, A,) , yielding a hierarchical model as follows,

M~ N(:Uk|/1k—11/T)
A=W, (sn) ™
4~ N(/Jw/]k)

where the fixed hyperparametefs S, andn are respectively the random walk precision mattie,
degrees of freedom and the precision of the Widttiattibution. Note that assuming random mean and
covariance for the statg, leads to a prior probability distribution coveriregwide range of tail
behaviors allowing discrete jumps in the statealae.

In fact, the marginal state distribution is obtairtgy integrating over the mean and precision matrix
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where the integration with respect to the precigioatrix leads to the known class of scale mixture
distributions introduced by Barndorff-Nielsen ([21].ow values of the degrees of freedom reflects

the heavy tails of the marginal distributigfz, | z,_,) .

Particle filtering methods offer a number of siggaht advantages over other conventional
methods. However, since they use the prior didiobuas the importance distribution [11], the la@ata
observation is not considered and not taken intmwatt when evaluating the weights of the particles.
Even this choice of the importance sampling digtidn has computational advantages, it can cause
filtering divergence. In cases where the likelihodidtribution is too small compared to the prior
distribution, very few particles will have signifint weights. Hence, a better proposal distributizat
takes the latest observation data into accoungésied. The VF yields an optimal choice of the samgpl
distribution over the state variable by minimizitige Kullback-Leibler (KL) divergence. In addition,
compared to the particle filtering method, the catafional cost and the memory requirements are
dramatically reduced by the variational approximmtin the prediction phase. In fact, the expeatatio
involved in the computation of the predictive distition have closed forms, avoiding the use of Mont
Carlo integration. Next, we present the variatiddayesian filter algorithm.

C. Variational Bayesian Filter

The variational approach consists in approximatipa, |z,) by a separable distribution

q(a,) = q(%)a(4,)a(A,) that minimizes the Kullback-Leibler divergence (B)L between the true
filtering distribution and the approximate distritaun,

DL (q" p):JQ(ak)bgB(%dak 9

The minimization is subject to constra;"ru(ak)d0/k =1. The Lagrange multiplier method used in

[31,32] shows that the updated separable approxigdistributionq(a,) has the following form:

Az) O p(Yi | 2Nz | {24).(A))
a(s) O N | 4y, A)
a(A) OW, (A 1S,)

Al | #e4) O N(<ﬂk" >'</‘5 >) (10)

where <> denotes the expectation operator relative tatsibution q. The parameters are iteratively
updated according to the following scheme:



Hy = AL_1(<Ak><Zk> +UAY)

A =(A) + AL (11)
n=n+1

S = (a2 )~ (2 )(m)" + ()2 ) +{pa )+ 577
lukp =/'1;—1
A=A+

In fact, taking into account the separable appraxémdistribution at timk—1, the predictive
distribution is written,

P(@r | 24r) O [ P(@y | @)@ ) dar
0 )z, A | 1), (44) (12)

The exponential form solution, which minimizes #glback-Leibler divergence between the predictive
distribution p(a, |z,.,) and the separable approximate distributign,(@), yields Gaussian
distributions for the state and its mean and Wistiiatribution for the precision matrix:

Ohpes (2) DNt} (A, )

Okk-1

qk|k—1(:uk)DN(IU* A ) (13)

kk-1"7" KK-1

qk|k—l(/]k)|:|Nn(V* n )

kk-1"" KkK-1

where the parameters are updated according toathe gerative scheme as and the expectations are
exactly computed as follows:

My = :ul:—l
A=A+
. 1
'uk\k—l = Ak\k—l (<Ak >k|k—1<zk >k|k—1 + 'ukp/‘l‘:)
/ﬁ(\k—l = <Ak >k|k—1 + Akp

Mgy =N +1

S: - (< Z(ZI> _<ZK>Qk|k-1<’uk >T +<luk>qk|k—1<zk >-(:k|k—l +</'Ik/'111—> + §_l)_l

k-1 Q-1 Okk-1

(14)

and the predictive expectations of the target stedenow evaluated by the following expressions:



<Zk>qk‘k_l = (#4)

(2z), =(A) ()

A1 Ak-1

Okk-1

(15)

(),

k-1 k-1

In the next Section, these state estimation tedesidEKF, UKF, PF, and VF) are used to estimate the
states variables (the leaf-area index LAl, the nwdtric water content of the layer 1, HUR1 and the
volumetric water content of the layer 2, HUR2) adlwas the model parameters of a LSM process.

Il. SIMULATIONS RESULTS ANALYSIS

A. Crop mode

The original data were issued from experimentsi@érout on a silty soil in Belgium, with a
wheat crop (Triticum aestivum L., cultivar Juliudyring 2 consecutive years, the crop seasons 2908-
and 2009-10. The experimental blocks were prepamdwo soil types (loamy and sandy loam),
corresponding to the agro-environmental conditionfs the Hesbaye region in Belgium. The
measurements were the results of four repetitigndabe, nitrogen level, soil type and crop seakach
repetition was performed on a small block (2 m mpwithin the original experiment as a complete
randomised block distribution, spread over thedfiglithin each soil type, to ensure measurement
independence. A wireless microsensor network (eKo geries system, Crossbow) was used to
continuously characterize the soil (water contsattion, temperature at two depths: 20 and 40 o) a
the atmosphere (radiation, temperature, relativeitlity, wind speed) within the vegetation. Pluvidmye
data were also acquired in the experimental fi€hk plant characteristics (LAl and biomass) wes® al
measured using reference techniques at regularvatge (2 weeks) along the crop seasons. The
measurements were performed since the middle afuBep(around Julian day 410) till harvest. During
the season 2008-2009, yields were quite high apgedo the optimum of the cultivar. This was mainly
explained by the good weather conditions and dcserft nitrogen nutrition level. The season 200920
was known to induce deep water stresses, and ttawmacaterized by yield losses.

The model for which the methods were tested is 8iRICS model. The equations are presented
in [33], and the parameters given at Table 1. Tymarchic equations indicate how each state variable
evolves from one day to the next as a functionhaf turrent values of the state variables, of the
explanatory variables, and of the parameters vatimeoding these equations over time allows one to
eliminate the intermediate values of the stateatdes and relate the state variables at any tintheto
explanatory variables on each day.

In the first step we are interested to compareeignation performances of EKF, UKF, PF and
VF in estimating three state variables of the idMiCS model: the leaf-area index LAl, the volunetri
water content of the layer 1, HUR1 and the voluioetater content of the layer 2, HUR2. Based on the
model equations described in [33], the mathematizadel of the LAI and soil moisture (called in teest
of the document LSM model) is given by:

LAI(t) = f,(LAI(t — 1) + 0)
HUR1(t) = f,(HUR1(t — 1) + 6) (16)
HUR2(¢t) = f3(HUR2(t — 1) + 0)



Wheret is the timef;.; are the corresponding model functions, érid the vector of parameters driving
the simulations (Table 1). LAl is the leaf areddr and HUR1 (resp. HUR2) is the volumetric water
content of the layer 1 (resp. the layer 2). Diszieg the model (15) using a sampling intervaAof(one
day), it can be written as,

LAL, = [f1(8)]At + LAL,_; + wi_;
HUR1y = [f2(0)]At + HUR1_; + w?_; (17)
HUR2, = [f5(0)]At + HUR2_4 + wj_,

wherew! ., ., is a process Gaussian noise with zero mean annrkmariancesf,j.

jef{1,.

Table 1. Model parameters ([34])

Parameter name Meaning True valye

ADENS (-) Parameter of compensation between stembeu and plant -0.8
density

BDENS (plants rf) Maximum density above which there is competiti@ween 1.25
plants

CR(%IRAC (cm degree — Growth rate of the root front 0.25

day~)

DLAIMAX (m ° leaves 1t Maximum rate of the setting up of LAI 0.0078

soil degreeday?3)

EXTIN (-) Extinction coefficient of photosynthetactive radiation in the 0.9
canopy

KMAX (-) Maximum crop coefficient for water requimgents 1.2

LVOPT (cm root cri s) Optimum root density 0.5

PSISTO (bars) Absolute value of the potential ofrstal closing 10

PSISTURG (bars) Absolute value of the potentighefbeginning of decrease in the4
cellular extension

RAY ON (cm) Average radius of roots 0.02

TCMIN (°C) Minimum temperature of growth 6

TCOPT (°C) Optimum temperature of growth 32

ZPENTE (cm) Depth where the root density is 1/2hefsurface root density for| 120
the reference profile

ZPRLIM (cm) Maximum depth of the root profile fdrd reference profile 150

B. Sampling data generation

To obtain original dynamic data, the model wastfitssed to simulate the temporal
responsebAly, HUR1,, HUR2, on basis of the recorded climatic variables of ¢hap season “2008-
2009". The sampling time used for discretizatiors\iiaday.

Moreover, to characterize the ability of the diéfet approaches to estimate both the states and the
parameters at same time, “true” parameter values weosen (Table 1). The advantage of working by
simulation rather than on real data is that the fparameter values are known. It is thus possible t
calculate the quality of the estimated parametedsthe predictive quality of the adjusted modeldach
method. The drawback is that the generality ofréseilts is hard to know. The results may depenthen
details of the model, on the way the data are géegrand on the specific data that are used. The
simulated values, assumed to be noise free, anensho Figure 1. The evolution of LAl during the



wheat's lifecycle presents the three expected ghagewth, stability, and senescence. Daily vismiest
of shallow ground water show fluctuations that weaenped in the subsoil layer 30 — 50 cm.

These simulated states were then contaminated »gtbh mean Gaussian errors, i.e., the
measurement noisg_, ~ N(0, 62), wherecZ = 0.1.
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Figure 1 Simulated LSM data used in estimation: state variables (LAI leaf area index, HUR1
volumetric water content of the layer 1; HUR2 volumetric water content of the layer 2).

C. Comparative Study 1: Estimation of State Variables from Noisy Measurements

In the first scenario, it is assumed that the mgdehmeters are known and the objective is to
estimate only the state variables, LAI, HUR1, andR2. Therefore, we consider the state vectorweat
wish to estimate as:

z, =%, =[LAl, HURL, HUR2, ] (18)

Eventually, to perform comparison between the teghes, the estimation root mean square errors
(RMSE criteria are used and calculated on the statits espect to the noise free data)

RMSE= \E((x-%)?) (19)

where x (respX) is the true parameter/state (resp. the estingaegmeter/state).

The simulation results of estimating the threeesta@l, , HURL, and HUR2, using EKF,

UKF, PF, and VF are shown in Figures 2(a,b,c), fgu2(d,e,f), Figures 2(g,h,i), Figures 2(jk,l)
respectively. Also, the estimation root mean sqearers RMSH for the estimated states are presented
in Table 2. It can be observed from Figure 3 anold & that EKF resulted in the worst performancalbf



estimation techniques, which is expected due tditited ability of EKF to accurately estimate theean
and covariance matrix of the estimated states tfrdimeralization of the nonlinear process moddle T
results also show that the PF provides a signifitaprovement over the UKF. This is because the
covariance is propagated through linearization hed tinderlying non-linear model, when the state
transition and observation models are highly naedr. VF provides a significant improvement over th
PF, which is due to the fact that the VF yields @stimal choice of the sampling distribution,

p(ak|ak_l, Y,) . by minimizing a KL divergence criterion that alstilizes the observed datg, .
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Figure 2 Estimation of state variables using various state estimation techniques (comparative study 1).

Table 2. Root mean square errors (RMSE) of estidnstiztes

Technique RMSE Mean at steady
state
LAI HUR1 HUR2 ADENS
mZIiZE:I[\)/i‘lssm- (%) (%) )
EKF 0. 063: 0. 059¢ 0. 029° -0.€
UKF 0. 061: 0. 051" 0. 020: -0.€
PF 0. 035¢ 0. 034" 0. 025: -0.€

VF 0. 019( 0.018° 0.012: -0.€




RMSE of estimated states
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Figure 3 Histogram showing the RM SE of estimated states using EKF, UKF, PF and VF

D. Comparative Study 2: Simultaneous Estimation of State Variables and Model
Parameters

The model (17) assumes that the parameters am dimd/or have been determined previously.
However, the model involves several parametersdhatusually not exactly known, or that have to be
estimated. Estimating these parameters, to contpletefine the model, usually requires several
experiment setups, which can be expensive andectuitig in practice. In a second step, in this wa,
propose to use a Bayesian approach that can coaisigesimplify the task of modeling compared to the
conventional experimentally intensive methods. 4 éitus consider that some of the parameters have to
be estimated to improve the simulations, by exanipdeADENS DLAIMAX, PSISTURGEXTIN, and
LVOPT parametersADENSis the parameter of compensation between stem eward plant density,
DLAIMAX is the maximum rate of the setting up of LRESISTURGS the absolute value of the potential
of the beginning of decrease in the cellular extensEXTIN is the extinction coefficient of
photosynthetic active radiation in the canopy, BX@OPTis the optimum root density. To estimate these
parameters, the following equations that deschibé evolution are also needed:

ADENS = ADENS , + )%,
DLAIMAX, = DLAIMAX,_, + 7.,

PSISTURG = PSISTURG,, + ),



EXTIN, = EXTIN,_, + /",
LVOPT, = LVOPT_, + ), (20)

where ijD{l---S} is a process Gaussian noise with zero mean andmmanianceaﬁ. Combining (19) and
(20), one obtains:

fi+ LAl = [91(6k-1)]At + LAl _; + Wi,
f2 : HURY = [g2(6-1)]At + HURL, 1 + wig_y
f3 + HUR2) = [g3(8-1)]At + HUR2; 1 + wji_y
fa : ADENS,, = ADENS,_; +vi_,
fs : DLAIMAX, = DLAIMAX),_, + yZ_,
fo : PSISTURG), = PSISTURG_1 + Vi_4
f7 : EXTIN,, = EXTIN,,_; + yi_,
fs : LVOPT, = LVOPTx_ + vii_,

(21)

.....

respectively the measurement and process noiseryedbich quantify randomness at both levels. In
other words, we are forming the augmented staje= (xy, 6,)T which is the vector that we wish to
estimate. It can be given by a 8 by 1 matrix:

xk(l, . ) 4 LAIk
xx(2,:) - HUR1,
xk(3,:) —>HUR2k
Hk(l,:) 4 ADENSk
Hk(Z, :) 4 DLAIMAXk
0,(3,:) — PSISTURG,
Hk(4,:) 4 EXTINk
6,(5:) — LVOPT,

(22)

In the following, we denoter=(WwW,w,)", andy=(yy.V.V.) . respectively the

measurement and process noise vectors, which fu&ii errors in the measurements and (ii)
randomness in the process. The idea here is thatdynamic model structure is available, the model
parameters can be estimated using one of stateadtn technique, namely EKF, UKF, PF, and VF. To
characterize the ability of the different approache estimate both at same time, the states and the
parameters, we have chosen true parameter valdabemtested each technique to see how well iticou
retrieve these true parameter values given the ttateas thus possible to calculate the qualitythaf
estimated parameters and the predictive qualith@fidjusted model for each method.

To go further in the analysis, the effect of theniver estimated parameters on the estimation
performances are investigated. Five cases sumrddoizlew are considered. In all cases, it is assumed
that three statesI{dl, HUR1, andHUR2)) are measured.

i) Case 1: the three stateBA(, HUR1 andHUR2) along with the parameteADENS be
estimated.



i) Case 2: the three statebA[, HUR1 andHUR2) along with the parameteSDENS, and
DLAIMAX will be estimated.

iii) Case 3: the three statés\(, HUR1 andHUR2) along with the parameteADENS, DLAIMAX
andPSISTURG will be estimated.

iv) Case 4. the three state&A[,HUR1 andHUR2) along with the parameterADENS,
DLAIMAX, PSISTURG, andEXTIN will be estimated.

V) Case 5: the three state&A(, HUR1 andHUR2) along with the parameteADENS,
DLAIMAX, PSISTURG, EXTIN andLVOPT will be estimated.

Here, we are interested in examining the effecthef number of estimated parameters on the
estimation performances of EKF, UKF, PF and VF anéstimating the states and parameters of the
LSM process model, during the first crop seasor8B22W09 (unstressed growth data). The estimation of
the state variables and parameter(s) for thesectiges were performed using the four state estimati
technigues, EKF, UKF, PF, and VF, and the estimat&sults for the model parameters using these
technigues are shown in Figures 4, 5, 6, and fentwely. For example, Figure 3(a) shows the
estimation of the parameter DLAIMAX in case 1, Figsl 4(b,c) show the estimation of the parameters
DLAIMAX and ADENS in case 2, and Figures 4(d,e,fow the estimation of all five parameters
ADENS, DLAIMAX, PSISTURG, EXT IN, and LV OPT in cas5. Also, Tables 3 to 7 compare the
performances of the four estimation techniquestlier five cases. For example, for case 1, Table 3
compares the estimation mean square errors fothtiee state variables LAI, HUR1 and HUR2 (with
respect to the noise-free data) and the mean ofstimated parameter DLAIMAX at steady state (i.e.,
after convergence of parameter(s)). Tables 4 tee3emt similar comparisons for cases 2-5, respagtiv
Moreover, Figures 8 to 12 present histograms coimpathe estimation RMSE for the three state
variables (LAI, HUR1 and HUR2), respectively, usthg various state estimation techniques.

It can be seen from the results presented in Tableshat in all cases, the PF outperforms UKF
and EKF (i.e., provides smaller RMSE for the stedgiables), and that the VF shows a significant
improvement over all other techniques. These restdnfirm those obtained in the first comparative
study, where only the state variables are estimdted advantages of the VF over the PF (and the PF
over the the UKF and EKF) can also be seen thrtlugih abilities to estimate the model parameteos. F
example, EKF could perfectly estimate one parametease 1 (see Figure 4(a)), but it took longer to
estimate a second parameter in case 2 (see Fig(nes), and it could not converge for the third
parameter in case 3 (see Figure 4(d,e,f)), whaseused to estimate three parameters. While, Ui{Hdc
estimate one parameter in case 1 (see Figuredfd)wo parameters in case 2 (see Figure 5(bid))t b
took longer to estimate a third parameter in cagee8 Figures 5(d,e,f)), and it could not convdagehe
fourth and the fifth parameters in cases 4 anaé [8gures 5(g,h,i,j) and 5(k,l,m,n,p)), wheresitised to
estimate all five parameters. The PF, on the dblaed, could estimate all parameters in all casés 1-
even though it took longer to converge in caseliere all five parameters are estimated (see Figure
The VF, however, could estimate all parameterdlifive cases (see Figure 7), and converged fakter
all other techniques. These advantages of the ¥lae to the fact it provides an optimum choicéhef
sampling distribution used to approximate the pamtedensity function, which also accounts for the
observed data.

The results also show that the number of estimptedmeters affect the estimation accuracy of
the estimated state variables. In other wordsalloestimation techniques, the estimation RMSE Af, L
HUR1 and HUR2 increases from the first comparatitedy (where only the state variables are
estimated) to case 1 (where only one parameter, IMRX, is estimated) to case 5 (where all five
parameters, ADENS, DLAIMAX, PSISTURG, EXT IN, an&/lOPT , are estimated). For example, the
RMSEs obtained using EKF for LAl in the first comative study and cases 1-5 of the second
comparative study are 0.0634, 0.0814, 0.105, 0.03B7 and 0.221, respectively, which increaséas t



number of estimated parameters increases (reféaltes 3-7). This observation is valid for the othe

state variables HUR1 and HUR2 and for all otheén&stton techniques, UKF, PF and VF.
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Figure 4 Estimation of the LSM model parameters using EKF for all cases - case 1: (a), case 2: (b),(c),
case 3: (d),(e).(f), case 4: (g).(h),(1).(), case 5: (K),(1),(m),(n.).(p).
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Figure5 Estimation of the LSM model parameters using UKF for all cases - case 1.
case 3: (d),(e),(f), case 4: (g),(h),(1).(), case 5: (K),(1),(m),(n.),(p).
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Figure 6 Estimation of the LSM maodel parameters using PF for all cases - case 1.
case 3: (d),(e).(f), case 4: (g).(h),(1).(), case 5: (K),(1),(m),(n.).(p).
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Figure 7 Estimation of the LSM modd parameters using VF for all cases - case 1. (a), case 2: (b),(c),

case 3: (d),(e),(f), case 4: (g),(h),(1).(), case 5: (K),(1),(m),(n.),(p).
Table 3. Root mean square errors (RMSE) of estinstites and mean of estimated parameter - case 1

Technique RMSE Mean at steathte
LAI HUR1 HUR2 ADENS
m2leaves  m-2 soil (%) (%) (-)
EKF 0.081¢ 0.0841 0.0411 -0.€
UKF 0.075¢ 0.079¢ 0.035¢ -0.€
PF 0.0511 0.0581 0.031¢ -0.€
VF 0.031¢ 0.0317 0.027¢ -0.€

Table 4. Root mean square errors of estimated sttd mean of estimated parameters - case 2

Technique RMSE Mean at steady state
LAI HUR1 HUR2 ADENS DLAIMAX
m2 leaves (%) (%) ) (m2leavesm-2
m-2 soil soildegreedays-1)
EKF 0.10¢ 0.11¢ 0.049: -0.€ 0.007¢
UKF 0. 094« 0.104 0.042: -0.€ 0.007¢
PF 0.079¢ 0.091 0.041: -0.€ 0.007¢
VF 0.054¢ 0.0651] 0.029¢ -0.€ 0.007¢

Table 5. Root mean square errors (RMSE) of estichsttates and mean of estimated parameters - case 3

Technique RMSE Mean at steady state
LAI HUR1 HURZ2 ADENS DLAIMAX  PSISTURG
m2leavesm- (%) (%) ) (m2 leaves m-2 soil (bars)
2soil degree days-1)
EKF 0.131 0. 14: 0.061 -0.€ 0.007¢ Did not
converge
(DNC)
UKF 0.12% 0.134 0.054 —-0.€ 0.007¢ 4
PF 0.117 0.102¢ 0.04= -0.€ 0.007¢ 4
VF 0.094 0.075¢ 0.035¢ -0.€ 0.007¢ 4

Table 6. Root mean square errors (RMSE) of estichsttates and mean of estimated parameters - case 4

Technique RMSE Mean at steady state
LAI HUR1 HURZ2 ADENS DLAIMAX  PSISTURG EXTIN
m2leavesm- (%) (%) ) (m2 leaves m-2 soil (bars) (bars)
2soil degree days-1)
EKF 0.187 0.20z 0.11Z —0.8 0.007¢ DNC DNC
UKF 0. 16t 0.18¢ 0.09z -0.€ 0.007¢ DNC DNC
PF 0. 141 0. 14¢ 0. 08¢t -0.€ 0.007¢ 4 0.S

VF 0.11z 0.09z 0.061¢ -0.€ 0.007¢ 4 0.6




Table 7. Root mean square errors (RMSE) of estichsttates and mean of estimated parameters - case 5

Technique RMSE Mean at steady state
LAI HUR1 HURZ2 ADENS DLAIMAX PSISTURG EXTIN LVOPT
nga:c\)/"esm- (%) (%) ) (mg;g;\;ez ::1?/;315)0“ (bars) (bars) )
EKF 0.221 0.23¢ 0.17¢ -0.€ 0.007¢ DNC DNC DNC
UKF 0.204 0.214 0.19¢ -0.€ 0.007¢ DNC DNC DNC
PF 0.14¢  0.15¢ 0. 10z -0.€ 0.007¢ 4 0.€ 0.5
VF 0.128  0.10z 0.09¢ -0.€ 0.007¢ 4 0.¢ 0.t

RMSE of estimated states-case 1
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Figure 8 Histogram showing the RM SE of estimated states for case 1 using EKF, UKF, PF and VF



RMSE of estimated states-case 2
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Figure 9 Histogram showing the RM SE of estimated states for case 2 using EKF, UKF, PF and VF
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Figure 10 Histogram showing the RM SE of estimated statesfor case 3 usng EKF, UKF, PF and VF
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Figure 11 Histogram showing the RMSE of estimated states for case 4 using EKF, UKF, PF and VF
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Figure 12 Histogram showing the RM SE of estimated statesfor case 5 usng EKF, UKF, PF and VF



E. Theeffect of driving variables

Eventually, to achieve the research, the effedhefdriving variables are determined. The five
studied cases presented at step 2 are appliececclithatic weather database of the crop season-2009
2010. This procedure was furthermore developecedine PSISTURG parameter was optimised at cases
2 and 3, while the climatic season 2008-2009 wasvknnot to induce stresses. We applied the differen
algorithms described above, EKF, UKF, PF and VBinaulate the responses of LAI, HUR1 and HUR2
as functions of time, in the second crop seasorf-2000 (season with deep water stresses). And
respectively the above techniques are used fomasitig the five model parameters, ADENS,
DLAIMAX, PSISTURG, EXTIN, and LVOPT. From Tables ® 12, we can show that variational
Bayesian filtering algorithm outperforms the claasialgorithms, and demonstrate the performance and
the good behavior of the proposed algorithm whengttowing season is varied. Moreover, Figures 13 to
17 present histograms comparing the estimation R¥M$BEhe three state variables (LAI, HUR1 and
HUR2), respectively, using the four state estinmaterhniques EKF, UKF, PF and VF.

Table 8. Root mean square errors (RMSE) of estithsttates and mean of estimated parameter - case 1

Technique RMSE Mean at steady
state
LAI HUR1 HUR2 ADENS

m2leavesm- (%) (%) )
2soil

EKF 0.093¢ 0.0901 0.0461 -0.€

UKF 0.071¢ 0.074¢ 0.038:i -0.8
PF 0. 054z 0.0531 0.034z -0.€
VF 0.0341 0.035i 0.023z -0.€

Table 9. Root mean square errors of estimated st mean of estimated parameters - case 2

Technique RMSE Meatrsteady state
LAI HUR1 HUR2 ADENS DLAIMAX

m2leavesm- (%) (%) -) (m2 leaves m-2 soil
2soil degree days-1)

EKF 0. 150z 0.158¢ 0.072¢ —0.8 0.007¢

UKF 0.122 0.1328 0.061¢ —-0.€ 0.007¢

PF 0.098¢ 0.0957 0.059:z -0.€ 0.007¢

VF 0.063¢ 0.0557 0.036¢ -0.€ 0.007¢

Table 10. Root mean square errors (RMSE) of estithstates and mean of estimated parameters -Zase

Technique RMSE Mean at steady state
LAI HUR1 HUR2 ADENS DLAIMAX PSISTURG
m2leavesm- (%) (%) -) (m2 leaves m-2 soil (bars)
2soil degree days-1)
EKF 0.212 0.204 0.141 —0.€ 0.007¢ DNC
UKF 0.18:¢ 0.17¢ 0.11¢% -0.€ 0.007¢ 4
PF 0.143] 0.143% 0.094¢ -0.€ 0.007¢ 4

VF 0.084 0.085¢ 0.059¢ -0.F 0.007¢ 4




Table 11. Root mean square errors (RMSE) of estidistates and mean of estimated parameters -Lase

Technique RMSE Mean at steady state
LAI HUR1 HUR2 ADENS DLAIMAX  PSISTURG EXTIN

m2leavesm- (%) (%) ) (m2 leaves m-2 soil (bars) (bars)
2soil degree days-1)

EKF 0.2161 0.23¢ 0.155 -0.€ 0.007¢ DNC DNC
UKF 0.1¢1 0.19¢ 0.124 -0.€ 0.007¢ DNC DNC
PF 0.143% 0.145¢ 0.09¢ -0.€ 0.007¢ 4 0.S
VFE 0.085: 0.087 0.07C -0.€ 0.007¢ 4 0.6

Table 12. Root mean square errors (RMSE) of estithstates and mean of estimated parameters -Kase

Technique RMSE Mean at steady state
LAI HUR1 HUR2  ADENS DLAIMAX PSISTURG EXTIN  LVOPT
mzlée:c\)/i&lesm- (%) (%) (-) (mgelgz\;ez ;}]/;E]_S)O" (bars) (bars) (-)
EKF 0.22¢ 0.255 0.168 —0.€ 0.007¢ DNC DNC DNC
UKF 0.19¢ 0.21z 0.135 —0.€ 0.007¢ DNC DNC DNC
PF 0.14= 0.146¢ 0.097¢ -0.€ 0.007¢ 4 0.€ 0.5
VF 0.08¢ 0.090z 0.081¢/ -0.€ 0.007¢ 4 0.€ 0.5
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Figure 13 Histogram showing the RM SE of estimated states for case 1 usng EKF, UKF, PF and VF
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Figure 14 Histogram showing the RM SE of estimated states for case 2 using EKF, UKF, PF and VF
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Figure 15 Histogram showing the RM SE of estimated states for case 3 using EKF, UKF, PF and VF



RMSE of estimated states-case 4
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Figure 16 Histogram showing the RMSE of estimated states for case 4 using EKF, UKF, PF and VF
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Figure 17 Histogram showing the RM SE of estimated states for case 5 using EKF, UKF, PF and VF



IV.  CONCLUSIONS

In this chapter, state estimation techniques aeé ts predict simultaneously three state variates
(Leaf area index (LAI) and soil moisture of two Idaiyers, HUR1 and HUR2) for a winter wheat crop
model and several parameters. Various state esimigchniques, which include the extended Kalman
filter (EKF), unscented Kalman filter (UKF), patgcfilter (PF), and variational Bayesian filter (V&re
compared as they are used to achieve this objective

These techniques (i.e., EKF, UKF, PF and VF) haenlextended to better handle nonlinear and
non-Gaussian processes with no a priori informadiorihe state, by utilizing a time-varying assuiopti
of statistical parameters. The time-varying assionptf statistical parameters is assumed hererthd
capture the uncertainty of the state distribution.

Two comparative studies have been conducted to amrpe estimation performances of these
four estimation techniques. In the first compamstudy, EKF, UKF, PF and VF are used to estinfae t
three state variables, LAl, HUR1, and HUR2. In $keond comparative study, the state variablestand t
model parameters are simultaneously estimatedtrendffect of number of estimated parameters on the
performances of the four estimation techniquesvsstigated.

The simulation results of both comparative studiesw that the PF provides a higher accuracy
than the EKF and the UKF due to the limited abilitythe EKF and the UKF to deal with highly
nonlinear process models. The results also shoithkaVF provides a significant improvement over th
PF. This is because, unlike the PF which dependbh@ghoice of sampling distribution used to estana
the posterior distribution, the VF yields an optimwchoice of the sampling distribution, which also
utilizes the observed data. The results of the rk@mmparative study show that, for all techniques,
estimating more model parameters affects the estimaccuracy as well as the convergence of the
estimated states and parameters. The VF, howetdbmprevides advantages over other methods with
respect to estimation accuracy as well convergence.
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KEY TERMS AND DEFINITIONS

States and parameters estimation:
State and parameter estimationhs process of obtaining the estimators of state variables and model
parameters based on a dataset.

Extended Kalman filter (EKF):

EKF is an estimation technique that is applicabladnlinear and non-Gaussian models. As the Kalman
filter is applicable to linear systems, the EKF ¢emviewed as an extension of the Kalman filtet tha
applied to a linearized version of the nonlineadeio

Unscented Kalman filter (UKF):
UKF is an estimation technique that uses a detastiinsampling techniqgue known as the unscented
transform to approximate the mean and the covagiahthe state and parameter vector.

Particle filter (PF):

PF, which is based on Bayesian estimation, is aesg@l Monte Carlo state estimation method for
nonlinear and non-Gaussian systems. The EKF arfd &l¢gorithms do not always provide a satisfactory
performance, especially for highly nonlinear preess as model linearization does not necessarily
provide good estimates of the mean of the statoorvend the covariance matrix of the estimatiorerr
which are used in state estimation. These iss@eaduairessed by the PF.

Variational filter (VF):

VF, which is based on Bayesian estimation, is statamation method for nonlinear and non-Gaussian
systems. It has been proposed recently to enrstate estimation because VF yields an optimal ehoic
of the sampling distribution by minimizing a KullilaLeibler (KL) divergence criterion. In fact,
variational calculus leads to a simple Gaussianpfiam distribution whose parameters (which are
estimated iteratively) also utilize the observethdavhich provides more accurate and computatignall
efficient computation of the posterior distribution

Environmental data:
Environmental data is that which is based on thasmeement of environmental pressures, the stdtesof
environment and the impacts on ecosystems.

Leaf Area Index:
Leaf Area Index is a method of measurement of éeeh in a given section of ground area expressed in
terms of half the square meters of leaf per squeater of ground.

Soil moisture:
Soil moisture is the volumetric water content ia doil.



