[en] Land-use change models are useful tools for assessing and comparing the environmental impact of alternative
policy scenarios. Their increasing popularity as spatial planning instruments also poses new scientific
challenges, such as correctly calibrating the model. The challenge in model calibration is twofold: obtaining
a reliable and consistent time series of land-use information and finding suitable measures to compare model
output to reality. Both of these issues are addressed in this paper. The authors propose a model calibration
framework that is supported by information on urban form and function derived from medium-resolution remote
sensing data through newly developed spatial metrics. The remote sensing derived maps are compared to
model output of the same date for two model scenarios using well-known spatial metrics. Results demonstrate
a good resemblance between the simulation output and the remote sensing derived maps.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Van de Voorde, Tim
van der Kwast, Johannes
Canters, Frank
Engelen, Guy
Binard, Marc ; Université de Liège - ULiège > Département de géographie > Plateforme "GITAN"
Cornet, Yves ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Télédétection et photogrammétrie
Uljee, Inge
Language :
English
Title :
A Remote Sensing Based Calibration Framework for the MOLAND Urban Growth Model of Dublin
Publication date :
2012
Journal title :
International Journal of Agricultural and Environmental Information Systems
ISSN :
1947-3192
eISSN :
1947-3206
Publisher :
IGI Global Publishing, United States - Pennsylvania
Volume :
3
Issue :
2
Pages :
1-21
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
MAMUD
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
Atkinson, P. M., & Tatnall, A. R. L. (1997). Neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699-709. doi:10.1080/014311697218700 (Pubitemid 27269964)
Barnsley, M. J., & Barr, S. L. (1997). Distinguishing urban land-use categories in fine spatial resolution land-cover data using a graph-based, structural pattern recognition system. Computers, Environment and Urban Systems, 21(3), 209-225. doi:10.1016/S0198-9715(97)10001-1 (Pubitemid 28229370)
Bauer, M. E., Loffelholz, B. C., & Wilson, B. (2008). Estimating and mapping impervious surface area by regression analysis of Landsat imagery. In Weng, Q. (Ed.), Remote sensing of impervious surfaces (pp. 3-19). Boca Raton, FL: CRC Press/Taylor & Francis Group. doi:10.1201/9781420043754.pt1
Benediktsson, J. A., Swain, P. H., & Ersoy, O. K. (1990). Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 540-551. doi:10.1109/TGRS.1990.572944 (Pubitemid 20737861)
Congalton, R. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46. doi:10.1016/0034-4257(91)90048-B
Cracknell, A. P. (1998). Synergy in remote sensing-what's in a pixel? International Journal of Remote Sensing, 19(11), 2025-2047. doi:10.1080/ 014311698214848
de Jong, S. M., & van der Meer, F. (2004). Remote sensing image analysis, including the spatial domain. Dordrecht, The Netherlands: Kluwer Academic. doi:10.1007/978-1-4020-2560-0
Engelen, G., & White, R. (2008). Validating and calibrating integrated cellular automata based models of land use change. In Albeverio, S., Andrey, S., Giordano, P., & Vancheri, A. (Eds.), The dynamics of complex urban systems (pp. 185-211). Heidelberg, Germany: Physica Verlag. doi: 10.1007/978-3-7908-1937-3-10
Engelen, G., White, R., & Uljee, I. (2002). The MURBANDY and MOLAND models for Dublin (Tech. Rep.). Maastricht, The Netherlands: RIKS BV
Gong, P., Marceau, D. J., & Howarth, P. J. (1992). A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sensing of Environment, 40(2), 137-151. doi:10.1016/0034-4257(92) 90011-8
Hagen-Zanker, A., Straatman, B., & Uljee, I. (2005). Further developments of a fuzzy set map comparison approach. International Journal of Geographical Information Science, 19(7), 769-785. doi:10.1080/13658810500072137 (Pubitemid 41269454)
Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning, 34(8), 1443-1458. doi:10.1068/a3496 (Pubitemid 35029063)
Kavzoglu, T, & Mather, P. M. (2003). The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 24(23), 4907-4938. doi:10.1080/0143116031000114851 (Pubitemid 37519427)
Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin, Germany: Springer-Verlag.
McGarigal, K, & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure (Tech. Rep. No. PNW-GTR-351). Portland, OR: USDA Forest Service Pacific Northwest Research Station.
Rashed, T., Weeks, J. R., Roberts, D. A., Rogan, J., & Powell, P. (2003). Measuring the physical composition of urban morphology using multiple endmember spectral mixture models. PhotogrammetricEngineer-ing and Remote Sensing, 69(9), 1011-1020. (Pubitemid 37078321)
Ridd, M. K. (1995). Exploring a V-I-S (Vegetation-Impervious Surface-Soil) model for urban ecosystem analysis through remote sensing-Comparative anatomy for cities. International Journal of Remote Sensing, 16(12), 2165-2185. doi:10.1080/01431169508954549 (Pubitemid 26431379)
Schott, J. R., Salvaggio, C., & Volchok, W. J. (1988). Radiometric sc ene normalization using pseudoinvariant features. Remote Sensing of Environment, 26(1), 1-16. doi:10.1016/0034-4257(88)90116-2 (Pubitemid 19299830)
Strahler, A. H., Woodcock, C. E., & Smith, J. A. (1986). On the nature of models in remote sensing. Remote Sensing of Environment, 20(2), 121-139. doi:10.1016/0034-4257(86)90018-0 (Pubitemid 17273507)
Torrens, P. (1998). A toolkit for measuring sprawl. Applied Spatial Analysis, 1(1), 5-36. doi:10.1007/s12061-008-9000-x
Van de Voorde, T., De Genst, W., & Canters, F. (2007). Improving pixel-based VHR land-cover classifications of urban areas with post-classification techniques. Photogrammetric Engineering and Remote Sensing, 73(9), 1017-1027. (Pubitemid 350194701)
Van de Voorde, T., van der Kwast, J., Engelen, G., Binard, M., Cornet, Y, & Canters, F. (2009a). Quantifying intra-urban morphology of the Greater Dublin area with spatial metric s derived from medium resolution remote sensing data. In Proceedings of the IEEE Joint Urban Remote Sensing Event (pp. 1-7).
Van de Voorde, T., De Roeck, T., & Canters, F (2009b). A comparison of two spectral mixture modelling approaches for impervious surface mapping in urban areas. International Journal of Remote Sensing, 30(18), 4785-4806. doi:10.1080/01431160802665918
van der Kwast, J., & Engelen, G. (2009). Calibration of land use change models: the potential of spatial metrics. In Maktav, D. (Ed.), Remote sensing for a changing Europe (pp. 402-411). Amsterdam, The Netherlands: IOS Press.
van der Kwast, J., Van de Voorde, T., Uljee, I., Engelen, G., Lavalle, C., & Canters, F. (2009). Using remote sensing derived spatial metric s for the calibration of land-use change models. In Proceedings of the IEEE Joint Urban Remote Sensing Event (pp. 1-9).
Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of earth's ecosystem. Science, 277(5325), 494-499. doi:10.1126/science.277.5325.494 (Pubitemid 27368986)
Weng, Q. (2008). Remote sensing of impervious surfaces. Boca Raton, FL: CRC Press/Taylor & Francis Group.
White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban landuse dynamics. Environment and Planning B, 24(3), 323-343. doi:10.1068/b240323