Paper published in a journal (Scientific congresses and symposiums)
Approximate Policy Iteration for Closed-Loop Learning of Visual Tasks
Jodogne, Sébastien; Briquet, Cyril; Piater, Justus
2006In Lecture Notes in Computer Science, 4212, p. 210-221
Peer reviewed
 

Files


Full Text
JBP06.pdf
Author postprint (1.42 MB)
The original publication is available at www.springerlink.com
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Reinforcement Learning; Approximate Policy Iteration; Extra-Trees; Grid computing; BitTorrent
Abstract :
[en] Approximate Policy Iteration (API) is a reinforcement learning paradigm that is able to solve high- dimensional, continuous control problems. We propose to exploit API for the closed-loop learning of mappings from images to actions. This approach requires a family of function approximators that maps visual percepts to a real-valued function. For this purpose, we use Regression Extra-Trees, a fast, yet accurate and versatile machine learning algorithm. The inputs of the Extra-Trees consist of a set of visual features that digest the informative patterns in the visual signal. We also show how to parallelize the Extra-Tree learning process to further reduce the computational expense, which is often essential in visual tasks. Experimental results on real-world images are given that indicate that the combination of API with Extra-Trees is a promising framework for the interactive learning of visual tasks.
Disciplines :
Computer science
Author, co-author :
Jodogne, Sébastien ;  Centre Hospitalier Universitaire de Liège - CHU > Radiothérapie
Briquet, Cyril ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique (ingénierie du logiciel et algorithmique)
Piater, Justus ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > INTELSIG Group
Language :
English
Title :
Approximate Policy Iteration for Closed-Loop Learning of Visual Tasks
Publication date :
September 2006
Event name :
European Conference on Machine Learning (ECML)
Event place :
Berlin, Germany
Event date :
du 18 septembre 2006 au 22 septembre 2006
Audience :
International
Journal title :
Lecture Notes in Computer Science
ISSN :
0302-9743
eISSN :
1611-3349
Publisher :
Springer, Berlin, Germany
Volume :
4212
Pages :
210-221
Peer reviewed :
Peer reviewed
Available on ORBi :
since 27 November 2008

Statistics


Number of views
101 (15 by ULiège)
Number of downloads
99 (3 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
1
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBi