[en] In the past years, mass univariate statistical analyses of neuroimaging data have been complemented by the use of multivariate pattern analyses, especially based on machine learning models. While these allow an increased sensitivity for the detection of spatially distributed effects compared to univariate techniques, they lack an established and accessible software framework. The goal of this work was to build a toolbox comprising all the necessary functionalities for multivariate analyses of neuroimaging data, based on machine learning models. The “Pattern Recognition for Neuroimaging Toolbox” (PRoNTo) is open-source, cross-platform, MATLAB-based and SPM compatible, therefore being suitable for both cognitive and clinical neuroscience research. In addition, it is designed to facilitate novel contributions from developers, aiming to improve the interaction between the neuroimaging and machine learning communities. Here, we introduce PRoNTo by presenting examples of possible research questions that can be addressed with the machine learning framework implemented in PRoNTo, and cannot be easily investigated with mass univariate statistical analysis.
Research Center/Unit :
Computer Science Department, University College London Institute of Psychology, King's College, London Wellcome Trust, London GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège Ecole Polytechnique Fédérale de Lausanne
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Human health sciences: Multidisciplinary, general & others
Author, co-author :
Schrouff, Jessica ; Université de Liège - ULiège > Centre de recherches du cyclotron
Rosa, Maria Joao
Rondina, Jane
Marquand, Andre
Chu, Carlton
Ashburner, John
Phillips, Christophe ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Neuroimaging, data acquisition and processing ; Université de Liège - ULiège > Centre de recherches du cyclotron
Richiardi, Jonas
Mourão-Miranda, Janaina
Language :
English
Title :
PRoNTo: Pattern Recognition for Neuroimaging Toolbox
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture UCL - University College London Wellcome Trust FCT - Fundação para a Ciência e a Tecnologia SNSF - Swiss National Science Foundation
Funding text :
Swiss National Science Foundation (PP00P2-123438) and Center for Biomedical Imaging (CIBM) of the EPFL and Universities and Hospitals of Lausanne and Geneva; The King’s College London Centre of Excellence in Medical Engineering, funded by the Wellcome Trust and EPSRC under grant no. WT088641/Z/09/Z
Ashburner, J.; & Friston, K. J. (2000). Voxel-based morphometry - The methods. NeuroImage, 11(6), 805-821.
Ashburner, J.; & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839-851.
Ashburner, J.; & Friston, K. J. (2009). Computing average shaped tissue probability templates. NeuroImage, 45, 333-341.
Ashburner, J.; & Friston, K. J. (2011). Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage, 55, 954-967.
Bishop, C. (2006). Pattern recognition and machine learning. Springer.
Borroni, B.; Di Luca, M.; & Padovani, A. (2006). Predicting Alzheimer dementia in mild cognitive impairment patients. Are biomarkers useful? European Journal of Pharmacology, 545(1), 73-80.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Boston: Kluwer Academic Publishers.
Chadwick, M. J.; Hassabis, D.; Weiskopf, N.; & Maguire, E. A. (2010). Decoding individual episodic memory traces in the human hippocampus. Current Biology, 20(6), 544-547.
Chu, C.; Ni, Y.; Tan, G.; Saunders, C. J.; & Ashburner, J. (2011). Kernel regression for fMRI pattern prediction. NeuroImage, 56, 662-673.
Chu, C.; Hsu, A. L.; Chou, K. H.; Bandettini, P.; & Lin, C. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1), 59-70.
Cox, D. D.; & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) 'brain reading': detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19, 261-270.
Cuingnet, R.; Gerardin, E.; Tessieras, J.; Auzias, G.; Lehéricy, S.; Habert, M. O.; et al. (2011). Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766-781.
De Martino, F.; Valente, G.; Staeren, N.; Ashburner, J.; Goebel, R.; & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns. NeuroImage, 43, 44-58.
Formisiano, E.; De Martino, F.; Bonte, M.; & Goebel, R. (2008). "Who" is saying "What"? brain-based decoding of human voice and speech. Science, 322(5903), 970-973.
Franke, K.; Ziegler, G.; Klöppel, S.; Gaser, C.; et al. (2010). Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage, 50, 883-892.
Friston, K. J.; et al. (2007). Statistical parametric mapping: the analysis of functional brain images. London: Elsevier Academic Press.
Golland, P.; & Fischl, B. (2003). Permutation tests for classification: Towards statistical significance in image-based studies. LNCS. Proceedings of IPMI: International conference on information processing and medical imaging, 2732. Springer, 330-341.
Guyon, I.; & Elisseeff, A. (2007). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182.
Hanke, M.; Halchenko, Y. O.; Sederberg, P. B.; Hanson, S. J.; Haxby, J. V.; & Pollmann, S. (2009a). PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7, 37-53.
Hanke, M.; Halchenko, Y. O.; Sederberg, P. B.; Olivetti, E.; Fründ, I.; Rieger, J. W.; et al. (2009b). PyMVPA: a unifying approach to the analysis of neuroscientific data. Frontiers in Neuroinformatics, 3, 3.
Hanson, S. J.; Matsuka, T.; & Haxby, J. V. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area? NeuroImage, 23(1), 156-166.
Hastie, T.; Tibshirani, R.; & Friedman, J.H. (2003). Elements of statistical learning. Springer.
Haxby, J.; Gobbini, M. I.; Furev, M. L.; Ishai, A.; Schouten, J. L.; & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425-2430.
Haynes, J.; & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8, 686-691.
Haynes, J.; & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523-534.
Haynes, J.; Sakai, K.; Rees, G.; Gilbert, S.; Frith, C.; & Passingham, R. E. (2007). Reading hidden intentions in the human brain. Current Biology, 17(4), 323-328.
Henson, R. N. A.; Shallice, T.; Gorno-Tempini, M.-L.; & Dolan, R. J. (2002). Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cerebral Cortex, 12, 178-186.
Jaakkola, T.; & Haussler, D. (1998). Exploiting generative models in discriminative classifiers. In Advances in Neural Information Processing Systems, 11, 487-493.
Jeffreys, H. (1961). The theory of probability (3 ed.). Oxford.
Kamitani, Y.; & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8, 679-685.
Kapur, S.; Craik, F. I. M.; Brown, G. M.; Houle, S.; & Tulving, E. (1995). Functional role of the prefrontal cortex in memory retrieval: a PET study. Neuroreport, 6, 1880-1884.
Klöppel, S.; Stonnington, C. M.; Chu, C.; Draganski, B.; Scahill, R. I.; Rohrer, J. D.; et al. (2008). Automatic classification of MR scans in Alzheimer's disease. Brain, 131, 681-689.
Kloppel, S.; Abdulkadir, A.; Jack, C. R.; Jr.; Koutsouleris, N.; Mourao-Miranda, J.; & Vemuri, P. (2011). Diagnostic neuroimaging across diseases. NeuroImage, 61(2), 457-463.
LaConte, S.; Anderson, J.; Muley, S.; Ashe, J.; Frutiger, S.; Rehm, K.; et al. (2003). The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage, 18(1), 10-27.
LaConte, S.; Strother, S.; Cherkassky, V.; & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26, 317-329.
Lemm, S.; Blankertz, B.; Dickhaus, T.; & Müller, K. (2010). Introduction to machine learning for brain imaging. NeuroImage, 56, 387-399.
Marquand, A.; Howard, M.; Brammer, M.; Chu, C.; Coen, S.; & Mourao-Miranda, J. (2010). Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 49(3), 2178-2189.
Mourao-Miranda, J.; Reynaud, E.; McGlone, F.; Calvert, G.; & Brammer, M. (2006). The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. NeuroImage, 33(4), 1055-1065.
Mourao-Miranda, J.; Hardoon, D. R.; Hahn, T.; Marquand, A. F.; Williams, S. C.; Shawe-Taylor, J.; et al. (2011). Patient classification as an outlier detection problem: an application of the one-class support vector machine. NeuroImage, 58(3), 793-804.
Mourao-Miranda, J.; Almeida, J.; Hassel, S.; de Oliveira, L.; Versace, A.; Marquand, A.; et al. (2012). Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disorders, 14(4), 451-460.
Mourão-Miranda, J.; Oliveira, L.; Ladouceur, C. D.; Marquand, A.; Brammer, M.; et al. (2012). Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents. PLoS One, 7(2), e29482. doi: 10.1371/journal.pone.0029482.
O'Toole, A. J.; Jiang, F.; Abdi, H.; & Haxby, J. V. (2005). Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17(4), 580-590.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; et al. (2011). Scikit-learn: machine learning in python. Journal of Machine Learning Research, 999888, 2825-2830.
Pereira, F.; Mitchell, T.; & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45, 199-209.
Phillips, C. L.; Bruno, M. A.; Maquet, P.; Boly, M.; Noirhomme, Q.; Schnakers, C.; et al. (2011). "Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. NeuroImage, 56(2), 797-808.
Polyn, S. M.; Natu, V. M.; Cohen, J. D.; & Norman, K. A. (2005). Category-specific cortical activity precedes retrieval during memory search. Science, 310(5756), 1963-1966.
Rasmussen, C.E.; & Williams, C.K.I. (2006). Gaussian processes for machine learning. The MIT Press.
Rasmussen, P. M.; Hansen, L. K.; Madsen, K. H.; Churchill, N. W.; & Strother, S. C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition, 45, 2085-2100.
Richiardi, J.; Gschwind, M.; Simioni, S.; Annoni, J.-M.; Greco, B.; Hagmann, P.; Schluep, M.; Vuilleumier, P.; Van De Ville, D. (2012). Classifying minimally-disabled multiple sclerosis patients from resting-state functional connectivity, NeuroImage
Shawe-Taylor, J.; & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge University Press.
Schölkopf, B. & Smola, A. J. (2002). Learning with kernels. MIT Press.
Schrouff, J.; Kussé, C.; Wehenkel, L.; Maquet, P.; & Phillips, C. (2012a). Decoding semi-constrained brain activity from fMRI using support vector machines and gaussian processes. PLoS One, 7(4), e35860. doi: 10.1371.
Schrouff, J.; Kussé, C.; Wehenkel, L.; Maquet, P.; & Phillips, C. (2012b). Decoding spontaneous brain activity from fMRI using Gaussian Processes: tracking brain reactivation, Proceedings of International Workshop on Pattern Recognition in Neuroimaging.
Shinkareva, S. V.; Mason, R. A.; Malave, V. L.; Wang, W.; Mitchell, T. M.; et al. (2008). Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings. PLoS One, 3(1), e1394. doi: 10.1371/journal.pone.0001394.
Singh, N.; Fletcher, P.; Preston, J.; Ha, L.; King, R.; Marron, J.; et al. (2010). Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. Springer: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010.
Spiridon, M.; & Kanwisher, N. (2002). How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron, 35, 1157-1165.
Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
Vemuri, P.; Gunter, J.L.; Senjem, M.L.; Whitwell, J.L.; Kantarci, K.; Knopman, D.S.; Boeve, B.F.; (.), & Jack Jr. C.R. (2008). Alzheimer's disease diagnosis in individual subjects using structural MR images: Validation studies. NeuroImage, 39(3), 1186-1197.
Zou, T. H. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301-320.