Abstract :
[en] Asperity flattening has a huge influence on friction and wear in metal forming processes. Nevertheless, phenomena that occur at the microscopic scale are still not well understood. Since no experiment can be easily performed in real forming conditions, numerical models are essential to achieve a better knowledge of what happens in these contact regions. In this paper, two finite elements models are presented. The first one represents the flattening of a serrated asperity field in plane-strain conditions. The results are compared to the experiments published by Sutcliffe [1]. The second one is a tri-dimensional asperity model flattened by a rigid plane. The boundary conditions applied to this model correspond to the ones encountered in a real cold-rolling case. The results are compared to the relative contact area computed by a strip rolling model using the analytical laws proposed by Wilson & Sheu [2] and Marsault [3].
Scopus citations®
without self-citations
0