Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57: 945-956
Arsenault J-L, Poulcur S, Messier C, Guay R (1995) WinRHlZO, a rootmeasuring system with a unique overlap correction method. Hort- Science 30: 906
Busch J, Mendelssohn IA, Lorenzen B, Brix H, Miao S (2006) A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora 201: 429-439
Cheng W, Coleman DC, Box JE (1991) Measuring root turnover using the minirhizotron technique. Agric Ecosyst Environ 34: 261-267
Clark R, MacCurdy R, Jung J, Shaff J, McCouch SR, Aneshansley D, Kochian L (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156: 455-465
de Dorlodot S, Bertin P, Baret P, Draye X (2005) Scaling up quantitative phenotyping of root system architecture using a combination of aeroponics and image analysis. Asp Appl Biol 73: 41-54
de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12: 474-481
De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11: 434-439
Draye X, Kim Y, Lobet G, Javaux M (2010) Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J Exp Bot 61: 2145-2155
French A, Ubeda-Tomás S, Holman TJ, Bennett MJ, Pridmore T (2009) High-throughput quantification of root growth using a novel imageanalysis tool. Plant Physiol 150: 1784-1795
Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218: 159-171
Hackett C, Rose D (1972) A model of the extension and branching of a seminal root of barley, and its use in studying relations between root dimensions. I. The model. Aust J Biol Sci 25: 681-690
Hammer G, Dong Z, Mclean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Sci 49: 299-312
Hochholdinger F, Park WJ, Sauer M, Woll K (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9: 42-48
Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321: 153-187
Hund A, Trachsel S, Stamp P (2009) Growth of axile and lateral roots of maize. I. Development of a phenotying platform. Plant Soil 325: 335-349
Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152: 1148-1157
Jahnke S, Menzel MI, van Dusschoten D, Roeb GW, Bühler J, Minwuyelet S, Blümler P, Temperton VM, Hombach T, Streun M, et al (2009) Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J 59: 634-644
Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104: 657-665
le Bot J, Serra V, Fabre J, Draye X, Adamowicz S, Pagès L (2010) DART: a software to analyse root system architecture and development from captured images. Plant Soil 326: 261-273
Lecompte F, Ozier-Lafontaine H, Pagès L (2001) The relationships between static and dynamic variables in the description of root growth: consequences for field interpretation of rooting variability. Plant Soil 236: 19-31
Lloret PG, Casero PJ (2002) Lateral root initiation. In Y Waisel, A Eshel, U Kafkafi, eds, Plant Roots: The Hidden Half, Ed 3. Marcel Dekker, New York, pp 127-155
Meijering E, Jacob M, Sarria JCF, Steiner P, Hirling H, Unser M (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58: 167-176
Naeem A, French AP, Wells DM, Pridmore TP (2011) High-throughput feature counting and measurement of roots. Bioinformatics 27: 1337-1338
Pagès L, Serra V, Draye X, Doussan C, Pierret A (2010) Estimating root elongation rates from morphological measurements of the root tip. Plant Soil 328: 35-44
Pagès L, Vercambre G, Drouet J-L, Lecompte F, Collet C, LeBot J (2004) RootTyp: a generic model to depict and analyse the root system architecture. Plant Soil 258: 103-119
Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14: 399-408
Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8: 38-50
Rasband WS (2011) Image J. U.S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/ (July 29, 2011)
Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274: 101-125
Skene KR (2000) Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann Bot (Lond) 85: 901-908
Smit AL, Bengough AG, Engels C, Noordwijk MV, Pellerin S, van de Geijn SC (2000) Root Methods: A Handbook. Springer-Verlag, Berlin
Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7: 27-41
Waisel Y, Eshel A (2002) Functional diversity of various constituents of a single root system. In YWaisel, A Eshel, U Kafkafi, eds, Plant Roots: The Hidden Half, Ed 3. Marcel Dekker, New York, pp 157-175
Watt M, Evans JR (1999) Proteoid roots: physiology and development. Plant Physiol 121: 317-324
Yazdanbakhsh N, Fisahn J (2009) High throughput phenotyping of root growth dynamics, lateral root formation, root architecture and root hair development enabled by PlaRoM. Funct Plant Biol 36: 938-946