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We present in this paper a novel, semiautomated image-analysis software to streamline the quantitative analysis of root growth
and architecture of complex root systems. The software combines a vectorial representation of root objects with a powerful
tracing algorithm that accommodates a wide range of image sources and quality. The root system is treated as a collection of
roots (possibly connected) that are individually represented as parsimonious sets of connected segments. Pixel coordinates and
gray level are therefore turned into intuitive biological attributes such as segment diameter and orientation as well as distance
to any other segment or topological position. As a consequence, user interaction and data analysis directly operate on
biological entities (roots) and are not hampered by the spatially discrete, pixel-based nature of the original image. The software
supports a sampling-based analysis of root system images, in which detailed information is collected on a limited number of
roots selected by the user according to specific research requirements. The use of the software is illustrated with a time-lapse
analysis of cluster root formation in lupin (Lupinus albus) and an architectural analysis of the maize (Zea mays) root system. The
software, SmartRoot, is an operating system-independent freeware based on ImageJ and relies on cross-platform standards for
communication with data-analysis software.

It is now widely accepted that root system architec-
ture (RSA) is a fundamental component of agricultural
and natural ecosystems productivity (Lynch, 1995;
Hammer et al., 2009; Hodge et al., 2009). Concurrently,
recent progress in our understanding of the molecular
bases of root growth and development in model
systems (De Smet et al., 2006; Péret et al., 2009) and
novel insights on the role of RSA in field resource
capture (Draye et al., 2010) yield new prospects of
manipulating RSA in crop species (de Dorlodot et al.,
2007). This situation reinforces the need for robust,
evolutive, and high-throughput root phenotyping
hardware and software solutions.
While new imaging technologies such as magnetic

resonance imaging (Jahnke et al., 2009) and x-ray
computed tomography are being developed to extract
RSA information from soil cores, classical imaging
using flat-bed scanners or cameras remains most
widely used. Digital imaging is indeed affordable,

features a wide range of image resolution, can be
adapted to an array of experimental systems (e.g.
hydroponics, aeroponics, rhizotrons, gel plates, gellan
gum), and has been extended to time-lapse and three-
dimensional applications (French et al., 2009; Hund
et al., 2009; Yazdanbakhsh and Fisahn, 2009; Iyer-
Pascuzzi et al., 2010; Clark et al., 2011).

In the same time, the interest in RSA phenotyping
has gradually evolved from static and global traits (e.g.
rootmass or length density) to dynamic and local traits
(e.g. growth rates, tropisms, insertion angles; Ge et al.,
2000; de Dorlodot et al., 2007). Accordingly, a panel of
software have been implemented targeting specific
traits and experimental constraints (for review, see
French et al., 2009; Le Bot et al., 2010). These software
can be assigned to manual, semiautomated, and fully
automated methods according to the amount of user
interaction.

In manual methods, users typically draw the skel-
eton of the root system using freehand graphical tools,
as in DART (Le Bot et al., 2010) or Win RHIZO Tron
(Regent Instruments, 2011). These methods exclude
software-generated errors and should provide accu-
rate estimation of most local and global traits, but they
are highly time consuming. They are often the only
solution for complex root systems and for rhizotron
images.

Semiautomated methods usually combine auto-
mated thresholding and skeletonization algorithms
with some extent of user intervention, mainly to
retouch and annotate software-generated root struc-
tures, as in EZ-Rhizo (Armengaud et al., 2009) and
RootReader3D (Clark et al., 2011). The number of
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errors is usually negligible with seedling images but
increases with the amount of root overlap. In principle,
many traits can be estimated accurately if the software
is used with the type of images and RSA for which it
was designed.

Finally, automated methods rely on predefined pro-
cedures to perform image analysis without any user
interaction. Such methods use specialized algorithms
and tend to be application specific, unlike manual or
semiautomated methods that generate explicit root
structure information. The number of errors is kept to
a minimum as long as the type of root system and
images fit the requirements of the software. Examples
of automated methods include WinRhizo (length and
topology; Arsenault et al., 1995), RootTrace (growth,
gravitropism, and branching; French et al., 2009;
Naeem et al., 2011), and a recent system developed
at Duke University (various morphological descrip-
tors; Iyer-Pascuzzi et al., 2010).

In line with the distinction between methods, it is
often the case that some areas of root images lend
themselves to automated analysis better than other
areas where the image quality is lower or where the
amount of root overlap is higher, for which semi-
automated or manual methods would perform better.
Sometimes, a spatial segmentation of images even
arises from the experimental design, as with areas (or
periods) where root growth is obviously altered by
local (or transient) conditions. As long as the research

focus is on local or dynamic traits (e.g. growth rate,
growing and branching angles, diameter or inter-
branch distance), a sampling-based processing strat-
egy would be applicable to the areas of interest. In
terms of efficiency, working on subsets of root systems
would indeed allowmore attention to the subset or the
handling of more (or more complex) systems at con-
stant cost.

In this study, we introduce a novel, multipurpose,
and semiautomated image-analysis toolbox (Smart-
Root) that speeds up the quantification of root growth
and architecture of complex root systems from a wide
variety of applications. The software combines a
highly intuitive user interface with a new tracing
algorithm and supports sampling-based image pro-
cessing. SmartRoot is a platform-independent soft-
ware (Windows, MacOS, Linux) implemented as a
plugin for the popular ImageJ software (Rasband,
2011) and relies on established cross-platform stan-
dards (Java, SQL, and XML). Some of its features are
illustrated with a time-lapse analysis of cluster root
formation in lupin (Lupinus albus) and with an archi-
tectural analysis of the maize (Zea mays) root system.

RESULTS AND DISCUSSION

Multidimensional Representations of Roots

SmartRoot shares some features with Geographic
Information Systems, in particular the ability to cap-
ture, store, present, and process data that are linked to
location. As with Geographic Information Systems,
information is stored in separate data layers. The first
layer comprises the source image (viz. the two-dimen-
sional array of raw pixel values). The second layer
contains all root morphological information in a vector
format, with individual roots approximated by seg-
mented lines (Fig. 1). The third data layer contains
the topological relationships between roots, while the

Figure 1. SmartRoot stores information in four separate data layers. A,
Source image (raster). B, Morphology (vectorial). C, Topology (double
lines = parent root; single lines = branch root; black circle = connec-
tion). D, Annotations (illustrated here with a beacon; see text). The
double arrows indicate matching positions in different coordinate
systems.

Figure 2. Effect of the distance between nodes (circles) on the accuracy
of the segmented line (dashed) approaching a curvilinear root object
(gray area). A, Large and fixed distances between nodes. Arrows point
to poorly represented regions of the root. B, Small and fixed distances
between nodes. C, Adaptive internode distances lead to parsimonious
segmented lines.
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fourth data layer contains user- or software-generated
annotations or beacons inserted along roots.
A consequence of the vector representation of roots

is that any position along a root has two corresponding
sets of coordinates: the classical [x, y] absolute coordi-
nates and very intuitive [r, d] relative coordinates
specifying the root identifier [r] and the (geodesic)
distance to the root base [d]. Using the second coor-
dinate system, it is easy to calculate interbranch
distances, to combine physical dimensions with to-
pological information, and to match corresponding
positions on successive images in a time-lapse anal-
ysis (see below).
The information stored in data layers is displayed

on the graphical user interface (GUI) as a separate set
of six Photoshop-like layers containing the source
image, the skeleton (segmented line) of individual
roots, the nodes of the segmented lines, the border of
individual roots, their area, a geodesic ruler along each
root, and a visual representation of the annotations
and beacons (Supplemental Fig. S1).
Although invisible to the user, the separation be-

tween data layers and GUI layers disconnects the
design of the GUI from any constraints relating to data
structure (and vice versa) and has proven to be in-
strumental in the evolution of SmartRoot since its first
implementation.

Root-Tracing Principles

SmartRoot features an automated individual root-
tracing algorithm triggered by amouse click anywhere
along the root in the image source GUI layer. It deter-
mines the center (midline) of the root near the picked
position and proceeds with the stepwise construction
of a segmented line approximating the root midline,
progressing forward and backward to the tip and base
of the root. The algorithm estimates the root diameter
at each node of the segmented line and uses this
information to set the orientation of the segmented line
(from the root base of the root tip). Afterward, a name
is given to the root (the [r] coordinate [see above]). This
interactive procedure is at the core of the sampling-
based processing mentioned in the introduction.

SmartRoot uses adaptive distances between nodes,
increasing the node density for tiny roots and in
curved regions of roots in order to maintain the
accuracy of the segmented representation of the roots
while minimizing the number of nodes (Fig. 2). In-
deed, large roots tend to show smaller curvature than
small ones and therefore can be represented with
fewer nodes. The implementation of adaptive dis-
tances is detailed below (see step 1). As it is used
hereafter, the term “node” denotes the intersection of
successive segments of the segmented line. It is thus
different from topological nodes referring to the
branching points along the roots.

Figure 3. Diagram of the SmartRoot tracing algorithm.

Figure 4. Illustration of the stepwise construction of the segmented
line. A, Pixel values are evaluated along a 90� arc centered in front of
the last node (NODE i). The resulting profile is compared against a
local threshold (see text). The candidate positions are filtered based on
their diameter similarity with NODE i diameter (here, candidate 2 is
excluded). Li, Initial radius. B, This algorithm fails when the root
curvature is too strong. C, Increasing the amplitude and decreasing the
radius of the arc allow the search algorithm to find the successor node.

Imaging Software for Root Architecture Analysis
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The optimal placement of nodes occurs during the seg-
mented line construction and proceeds as follows (Fig. 3).

Step 1. Before adding a new node to the segmented
line, the algorithm investigates the pixel values along a
search path, consisting of an arc of circle centered on
the current node and oriented opposite the previous
node (Fig. 4A). The initial amplitude of the arc is set to
90� to increase the likelihood of finding the prolonga-
tion of the root while avoiding branches or neighbor-
ing roots. The initial radius of this arc is set at two
times the diameter of the current node.

Step 2. Pixel values along the search path are com-
pared against a threshold value adjusted to local gray-
scale gradients (for details, see Supplemental PDF S1).
If more than one candidate position is detected, the
best one is selected based on diameter similarity with
the current node (Fig. 4A).

Step 3. If the algorithm does not find a candidate
position for the next node (Fig. 4B), it changes the
search path amplitude to 120� and decreases the arc
radius (Fig. 4C). If this fails, the algorithm considers
that the end of the root has been reached and the
tracing in that direction stops.

Step 4. The algorithm then seeks for multiple points
(Fig. 5) along root borders near the candidate position
to localize root borders with a subpixel resolution
(comparing interpolated pixel values with the local
threshold determined previously; Fig. 6). This proce-
dure increases the accuracy of diameter estimation of
tiny roots or in highly branched regions (for discussion
of diameter estimation accuracy, see Supplemental

PDF S2). The distance between borders at the candi-
date position is then tested against three conditions. If
that distance is smaller than 0.8 times the diameter of
the previous node, the tracing stops. This condition
aims at finding the very end of thick roots, which have
a long and cone-shaped apex. If that distance is larger
than 1.5 times the diameter of the previous one, it is
considered that a neighbor root has come into contact
with the root being traced, thereby creating an appar-
ent diameter increase. A new node with a diameter
equal to that of the current node and aligned to the
closest root border is then created (Supplemental Fig.
S2). If that distance is larger than 4.0 times the diam-
eter of the previous node (Fig. 7), the tracing stops.
This condition occurs when the basipetal tracing of a
lateral root reaches the junction with the parent root.
The test may lead to different types of errors that are
discussed in Supplemental PDF S3 but that can be
easily corrected manually. Otherwise, a new node with
a diameter equal to the interborder distance is created
equidistant to the two borders.

Newly created nodes are appended to the seg-
mented line, and the construction proceeds until the
algorithm stops. The parameters of the algorithm have
been determined empirically using a wide range of
RSA and image qualities. They can be taken as fairly
generic, although they could still be optimized for
specific images.

The user can edit the newly created root by simple
drag-and-drop actions on the different nodes (e.g.
adding, moving, deleting, or adjusting diameters).

Figure 5. Illustration of the multipoint border search and centering
algorithm. The white circle represents the initial position of the node.
The dashed arrows represent the different trajectories used to find the
root border. The solid arrow represents the shortest segment containing
the node and joining root borders. This segment is used to estimate the
local root diameter and to recenter the node on the root axis.

Figure 6. Consequences of subpixel resolution on the variability of
diameter estimation. A, Closeup of the original image, near the border
of a root. The dashed line marks the position of the threshold limit
between root and background pixels. B, Segmented image after dis-
crete thresholding. C, Interpolation of gray levels in A generates a
smooth transition between root and background pixels . The position
of the threshold limit can be approximated locally with a line. D,
Segmented image after thresholding of the interpolated image.
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As the editing takes place in the nodes layer, it does
not modify the source image and makes this operation
very intuitive. Several roots can picked and traced at
once by stretching a line-drawing tool across them.

Topology

Topological relationships can be set by attaching
lateral roots to their parent. This information is used
typically to calculate branching or insertion angles,
positions of insertion, and interlateral distances. It is
also very useful for monitoring the sequence of lateral
root formation by individual parent roots in a series of
time-lapse images. The topological information is also
part of the specification of root types (primary, first
order, etc.) and provides the shortest path connecting a
root to the root-shoot junction.
Due to the large number of laterals along a parent

root, SmartRoot features an algorithm to detect, trace,
and attach most laterals of an already traced parent
root (for discussion of tracing time of laterals, see
Supplemental PDF S4).
This algorithm creates a search path parallel to the

root border at a distance arbitrarily set to the root
diameter. Similar to the root-tracing algorithm, pixel
values along this search path are compared against
their local threshold value, and a new lateral root is
created whenever a satisfying position is found (Fig.
8). For every new lateral built, a number of optional
exclusion criteria (such as diameter, insertion angle,
and length of the newly build root) are evaluated. This
filtering reduces the number of false positives but may
eventually lead to a small number of false negatives
(missed laterals). Adjusting the settings of the filtering
reduces significantly the number of errors.

Root Annotations

The [r, d] coordinate system mentioned above en-
ables the referencing of virtually any type of informa-
tion with specific longitudinal positions along roots.
This referencing is implemented in SmartRoot through
annotation tools designed for various purposes. The
study of cluster root formation given below illustrates
this capability.

Annotations can be used to point to the most distant
lateral along a root, whose distance to the tip can be
used as a proxy to the root growth rate (Lecompte
et al., 2001; Pagès et al., 2010). This annotation is auto-
matically added/updated when a new most-distal
lateral is added to a root. Annotations can be used in
pairs to delineate regions along the root, as needed in
experiments involving heterogenous nutrient supply,
where a separate morphological analysis of regions
submitted to different conditions is desirable. Anno-
tations can also be used as simple beacons to request
subsequent exportation of local information (direction,
diameter, distance to the tip, path to the root system
origin; see below). Finally, annotations can also be
used as a generic, free text-commenting tool.

Time Series Analysis

Amajor feature of SmartRoot is the ability to handle
sequences of time-lapse images, thereby supporting
root growth and development analyses. The general
principle of time-lapse handling is that information
stored across different images (e.g. annotation, branches,
or length) and corresponding to different time points
can be cross-linked, displayed on a single image (gen-
erally the last of the time series), and exported in a
single database query (see below).

The merging of information across different images
is performed in the [r, d] coordinates system and is
therefore independent from Cartesian coordinates
(Fig. 9). Therefore, SmartRoot has the ability to handle

Figure 7. Detection of root junctions. A sudden increase of the
orthogonal distance between the end of the segment and the closest
borders marks the termination of the segmented line construction (see
text).

Figure 8. Lateral root detection algorithm. A, The algorithm creates
search paths parallel to each root border at a distance arbitrarily set to
the local root diameter (d = B). B, As for the root-tracing algorithm,
pixel values along this search path are compared against their local
threshold value, and a new lateral root is created whenever a satisfying
position is found.
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time-stamped images of root systems grown in liquid
or air, where successive images are generally not
superposable. This requires that the roots of interest
be traced on every image of the image sequence and
be coherently identified. As this can be tedious with
complex images, the graphical user interface offers
several intuitive viewing tools to navigate simulta-
neously along a root across different images.

When plants are grown on solid medium (e.g.
Arabidopsis [Arabidopsis thaliana] on agar plates), the
root system structure is generally well conserved and
is only augmented from one image to the next. In such
cases, the tracings stored in a source image can be
imported in a target image, either in a forward way,
the imported tracings being augmented in the target
image, or in a backward way, the imported tracings
being cut or deleted to match the target image. If
the source and seed images are not perfectly aligned,
the root system structure of the source image can be
registered on the target image through a linear trans-

formation (translation and rotation) carried out using
three user-specified landmarks (Thévenaz et al., 1998).

Data Handling

Information generated using SmartRoot can be ex-
ported as built-in tables to any SQL-compliant external
database system for further analysis. This capability
has been successfully used with Microsoft Access and
MySQL database systems. At present, built-in tables
include a table of node coordinates and diameter, a
table of root global data (length and topological infor-
mation), a table of annotations, and a table of root
length densities (as shown in Table I). This basic set of
information is generic enough to allow the computa-
tion of most variables used in root morphological
analysis: growth, gravitropic behavior (tip angle as a
function of time), wavy patterns (distance between
positions having the same direction), radial growth
(diameter as a function of longitudinal position and
time), morphological response to localized or transient
environments, lateral root density, etc. From a techni-
cal point of view, many of those variables can be
accessed transparently using SQL views defined once
in the external database system.

Image Requirements (Type and Quality)

Many aspects of image quality (including resolu-
tion, contrast, and background noise) are known to
affect image processing output. Not surprisingly, the
best results are obtained with high-resolution images
as captured using a flat-bed (transparency) scanner.
This technology potentially provides images of high
quality (Smit et al., 2000) but is time consuming and
may not be suitable for high-throughput image acqui-
sition. Images of lower quality (e.g. camera photo-
graphs) can be analyzed with SmartRoot as long as
roots are at least two to four pixels wide (for a dis-
cussion of accuracy, see Supplemental PDF S2). Due to
the adaptive thresholding used by the tracing algo-
rithm, background noise and contrast are usually not
an issue. The software has been positively evaluated

Figure 9. Analysis of time-lapse image sequences of plants grown in
liquid or air medium (when root systems at different time points cannot
be superposed). Corresponding positions are established based on the
[r, d] coordinates (see text).

Table I. Built-in tables available for export in SmartRoot

The root length density table is designed for rhizotron images acquired as described by Cheng et al.
(1991) and Busch et al. (2006). ID, Identifier.

Export Options Export Data

Global root data (one record per root) Image filename/root ID/length/surface/volume/branching
order/topological position/number of children/
branching density/[d] coordinates of first and last child
on the root axis/insertion angle/[d] coordinate of the
insertion point

All marks (one record per mark) Image filename/[r,d] coordinates of the mark/annotation
type/annotation value

Nodes data (one record per node) Image filename/[r, d] coordinates/[x, y] coordinates/
node diameter

Root length density Image filename/[x, y] coordinates of the considered
area/root length density in this area

Lobet et al.
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using images from different experimental setups, such
as aeroponics, petri plates, or rhizotrons.
SmartRoot reads the most popular image file types

(jpg, gif, tif, and bmp). Image processing is carried out
in the grayscale space, with roots appearing darker
than background. Color images are automatically
transformed to grayscale, and gray level inversion can
be performed if required.

Example 1: Architectural Analysis of Maize

We first illustrate the capabilities of SmartRoot with
an architectural analysis as part of a modeling study of
carbohydrate competition between the various root
types of maize appearing during the first 2 weeks after
germination.
SmartRoot was used to estimate growth and branch-

ing parameters (growth rates, lateral root density,
interlateral distances, and branching angles) of the var-
ious maize root types (primary, seminal, crown, and
first-order lateral roots; named after Hochholdinger et al.
[2004]) in aeroponics.
Twelve maize plants were grown in aeroponics, and

their root system was photographed at daily intervals
during 15 d. The resolution and quality of the images
were low, with an uneven and noisy background (Fig.
10A). The primary, seminal, and crown roots were
traced on each photograph of the time-lapse sequences
using the line selection tools, and the laterals were
traced only on the last photograph of the sequence
using automated lateral root tracing (Fig. 10B). Two
data sets were established: one containing time series
of root length (primary and seminal), and a second
containing a nearly complete architectural description
of the root system at the end of the experiment.
Using the first data set, the growth rates of the

primary, seminal, and crown roots were calculated.
Insertion angles (Fig. 11A), interbranch distances (Fig.
11B), root diameters (Fig. 11C), and the length of the
apical unbranched zone were retrieved from the sec-
ond data set. The growth rates of lateral roots were
estimated with the SAS software (SAS Institute) based
on their length, their position on the parent axis, and

the growth rate of the parent axis (Hackett and Rose,
1972; Lecompte et al., 2001), assuming that lateral root
initiation in maize is almost acropetal (Lloret and
Casero, 2002). A summary of the architectural param-
eters is given in Table II.

These parameters (mean values and SD) were used to
execute a root architecture model (RootTyp; Pagès
et al., 2004) to simulate virtual and dynamic root sys-
tems useful for the carbohydrate competition analysis
(data not shown).

This example made extensive use of SmartRoot tools
supporting time-series and topological analyses. It illus-
trates the possibility of extracting an information-rich
data set from very simple experiments, even with low-
quality images.

Figure 10. Analysis of 15-d-old maize root systems grown in aero-
ponics. A, Low-resolution source image from a CCD camera. B,
Representation of root midlines after tracing.

Figure 11. Histograms generated with the graph-builder tool box of
SmartRoot (maize example). A, Insertion angles. B, Interbranch dis-
tances. C, Diameter (dark gray, first-order laterals; light gray, primary
roots).
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Example 2: Time-Lapse Analysis of Cluster Root
Formation in Lupin

This second example illustrates a sampling-based
processing and the possibilities offered by the anno-
tation tool. In several species, compact clusters of short
roots, first described by Purnell (1960), are produced in
discrete regions along first-order laterals, called pro-
teoid roots. Cluster roots increase phosphorus acqui-
sition and enhance the survival of these species on
their native low-phosphorus soils (for review, see
Shane and Lambers, 2005). Little is known about the
acquisition of proteoid root identity or about the
mechanisms that trigger the initiation of clusters along
proteoid roots. It is currently thought that a systemic
signal is involved, leading to discrete events of syn-
chronous cluster root formation (Watt and Evans, 1999;
Skene, 2000). In order to explore the temporal dynam-
ics of cluster root formation and to identify growth and
morphological features that are singular to proteoid
roots, the root systems of 12 lupin plants grown in
aeroponics were scanned at daily intervals during 16
d. The resulting time-lapse sequences have been ana-
lyzed with SmartRoot.

Despite the high quality of the images, carrying out
this type of analysis using standard skeleton-based
algorithms would be hampered by the high degree of
root overlapping, unless a prohibitively long manual
separation of roots was made prior to scanning. This,
fortunately, is a typical situationwhere sampling parts of
the root system would be a practical way to escape root
separation while providing the data required (Fig. 12).

Thirty first-order lateral roots randomly selected on
each plant were retraced in all images from their emer-
gence until the end of the experiment. When a lateral
turned out to be a proteoid root, the positions of its
clusters were recorded over time using interval annota-

tion tools (Fig. 13). The final data set comprised a set of
information for individual lateral roots: length over time
and diameter and position of the clusters (if any). This
data set was exported to a Microsoft Access database
and analyzed with the SAS software (SAS Institute).

Significant differences were found between proteoid
and nonproteoid roots for growth rates (0.76 and 0.27
cm d21, respectively; P , 0.001, t test) and diameters
(0.059 and 0.039 cm, respectively; P , 0.001, t test; Fig.
14). Besides, proteoid roots tended to form only during
the first 4 d after germination, while nonproteiod root
formation continued over time (Fig. 15). These mor-
phological differences suggest that proteoid root
identity is already established when the lateral root
emerges from the primary root (or that roots with low
growth potential lose the ability to form clusters).

From the same data set, the number of clusters for
individual plants was counted over time, with a tem-
poral resolution of 1 d (Fig. 16). This analysis revealed
a continuous pattern of cluster root formation at the
plant level, which does not fully support the systemic
signaling hypothesis, which states that cluster forma-
tion should occur in flushes. However, the temporal
resolution of our analysis does not allow us to exclude
the possibility of the synchronous formation of clus-
ters with a daily (or subdaily) frequency.

Several features of SmartRoot have been instrumen-
tal in this experiment: the annotation tools to export
cluster boundaries; the sampling-based processing to
enable the analysis of images overcrowded in roots;
and the viewing tools for the reliable identification of
the selected laterals throughout the image sequence.

CONCLUSION

We have presented a novel software supporting in-
depth characterization of root morphology, geometry,
and topology from images or time-lapse image se-
quences. The software uses several algorithms de-

Table II. Summary of the architectural data of 15-d-old maize plants
grown in aeroponics

Values shown are means 6 SE. Crown roots were about 2 cm long at
the end of the experiment and were not analyzed. LAUZ, Length of
apical unbranched zone; LR, lateral root. Roots are named according
to Hochholdinger et al. (2004). The growth rate of lateral roots is
estimated in their linear growth phase. The validity of the insertion
angle is questionable, since images are two-dimensional projections of
three-dimensional root systems.

Root Data Value

Primary
Growth rate (mm d21) 37.0 6 0.2
Diameter (mm) 1.4 6 0.3
Branching density (LR cm21) 5.9 6 2.3
LAUZ (mm) 146.8 6 54.8

Seminals
Growth rate (mm d21) 31.0 6 0.6
Diameter (mm) 0.9 6 0.4

Laterals
Growth rate (mm d21) 0.6 6 0.17
Diameter (mm) 0.48 6 0.16
Insertion angle (�) 65.6 6 14.3

Figure 12. Analysis of a 16-d-old lupin root system grown in aero-
ponics. A, High-resolution (600 dpi) source image from a flat-bed
scanner. B, Representation of the midline of selected roots after tracing.
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signed for root tracing and has been validated on a
wide range of image spatial resolution, noise, and
contrast. The strengths and weaknesses of SmartRoot
are listed in Table III and discussed below.
Currently available imaging tools developed for the

analysis of RSA share the same type of work flow:
automated analysis followed (sometimes) by manual
editing. This strategy lends itself to medium- to high-
throughput handling of root images but tends to be
restrictive on the complexity of the root systems that
can be analyzed. With branched root systems present-
ing a large degree of overlap, the user has to manip-
ulate individual roots in the scanner tray prior to
scanning or perform an intensive editing of the root
skeleton. This reduces the throughput of the analysis
and ultimately leads to restricting root studies to the
young seedling stage.
The design of SmartRoot was largely influenced by

Yoav Waisel’s perspective that root systems consist of
populations of roots of different types, ages, and
topological and spatial locations (Waisel and Eshel,
2002). The focus, therefore, was placed on individual
root behavior rather than on cumulated variables that
are more difficult to interpret. Here, we introduce an
innovative type of work flow, based on root system
sampling at the time of image analysis. With this
approach, manipulating roots prior to imaging is no
longer required, since parts of the root system where
image quality or root overlapping would preclude
accurate analysis or imply intensive editing can sim-
ply be discarded. The analysis can also be focused on
specific root types, whichmay not be easily recognized
by an algorithm or can be performed stepwise, starting
with an evaluation of inexpensive variables and pro-
ceeding with deeper analysis only where needed.
Therefore, the throughput of image processing using
SmartRoot will depend on the type of root system, the
quality of the image, and the desired information (for
an evaluation of processing time, see Supplemental

PDF S4). A direct consequence of this sampling strat-
egy is an inability to estimate variables such as total
root length, at which most root analysis software are
usually very good.

A further innovation of SmartRoot, compared with
many root-imaging software, is the vectorial represen-
tation of roots. This representation enables the most
useful capabilities/features of the software that sup-
port the sampling strategy: intuitive editing and
annotation; navigation in a time-lapse sequence of
nonsuperposable images; and an object-oriented data
structure allowing an explicit topological description
of root systems.

A classical issue in the analysis of root system
images is the discrimination between root branching
and root overlapping. Initially, this issue attracted
attention because overlaps create biases in the estima-
tion of the total root length (Arsenault et al., 1995). The
problem becomes more complicated if the scope of the
analysis extends to the recognition of individual roots,
in which case the crossing root segments must also be
correctly connected. All software that we know, in-
cluding SmartRoot, attempt to recognize a finite list of
situations, which they handle in an approximate way.
There remains here an important area for the devel-
opment of more generic algorithms integrating, for
instance, advances in neurone imaging.

There are increasing reports of using color images to
ease the separation of roots from extraneous objects on
the image (substrate particles) or to analyze root
health. SmartRoot currently lacks color management;
however, the multilayer approach will make it easy to
implement the stacking of additional raster layers,
providing data in other ranges of the electromagnetic
spectrum (mainly visible and fluorescence).

To some extent, further developments may come
from biomedical imaging, where neuron-tracing and
cell-tracking algorithms have become popular (Meijering
et al., 2004). Indeed, neurons and root systems share a
similar tree-like structure, and the displacement of cells

Figure 13. Evolution of a single proteoid root containing a single, long-
lived root cluster (lupin example): length of the proteoid root (solid
line), emergence of the root cluster (arrow), and evolution of the cluster
boundaries (dashed lines).

Figure 14. Relationship between growth rates and diameter of lateral
roots (lupin example). A clear discrimination is seen between non-
proteoid roots (white circles) and proteoid roots (black circles).

Imaging Software for Root Architecture Analysis

Plant Physiol. Vol. 157, 2011 37



shows parallel behaviors with growing root meristems.
Preliminary testing indicates that those methods are
not directly applicable on root images, which are very
different from those obtained in the biomedical sci-
ences. However, tracing and tracking tools used for
neurons and cells rely on different image-analysis con-
cepts, and those are worth being investigated in the root
domain.

SmartRoot is a platform-independent freeware avail-
able at www.uclouvain.be/en-smartroot.

MATERIALS AND METHODS

Experience 1

Maize plants (Zea mays, genotype B73) were grown an aeroponic system

(de Dorlodot et al., 2005) with a modified Hoagland solution (doubled iron

content). The images, seven megapixels in size, were taken with a regular

CCD camera (Canon EOS 450D) every 2 d in a small black chamber built

inside the greenhouse.

Experience 2

Lupin plants (Lupinus albus) were grown in an aeroponic system (de

Dorlodot et al., 2005) with the same nutrient solution used by Johnson et al.

(1994). Daily images were taken during 16 d with a flat-bed scanner (Microtek

9600XL) at a resolution of 300 dpi.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Display option in SmartRoot.

Supplemental Figure S2. How does the SmartRoot tracing algorithm deal

with touching roots?

Supplemental PDF S1. Adaptive thresholding algorithm.

Supplemental PDF S2. SmartRoot accuracy estimation.

Supplemental PDF S3. Handling root crossing.

Supplemental PDF S4. SmartRoot tracing time estimation.
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