[en] A characteristic feature of the nuclear microprobe using a 3 MeV proton beam is the long range of particles (around 70 mu m in light matrices). The PIXE method, with EDS analysis and using the multilayer approach for treating the X-ray spectrum allows the chemistry of an intra-crystalline inclusion to be measured, provided the inclusion roof and thickness at the impact point of the beam (Z and e, respectively) are known (the depth of the inclusion floor is Z + e). The parameter Z of an inclusion in a mineral can be measured with a precision of around 1 mu m using a motorized microscope. However, this value may significantly depart from Z if the analyzed inclusion has a complex shape. The parameter e can hardly be measured optically. By using combined RBS and PIXE measurements, it is possible to obtain the geometrical information needed for quantitative elemental analysis. This paper will present measurements on synthetic samples to investigate the advantages of the technique, and also on natural solid and fluid inclusions in quartz. The influence of the geometrical parameters will be discussed with regard to the concentration determination by PIXE. In particular, accuracy of monazite micro-inclusion dating by coupled PIXE-RBS will be presented. (C) 2008 Elsevier B.V. All rights reserved.
Research Center/Unit :
IPNAS, ISTO
Disciplines :
Physics Earth sciences & physical geography
Author, co-author :
Strivay, David ; Université de Liège - ULiège > Département de physique > Physique nucléaire, atomique et spectroscopie
Ramboz, Clairette; CNRS-Orléans > Institut des Sciences de la Terre d’Orléans
Gallien, Jean-Paul; CEA-Saclay (France) > Laboratoire Pierre Süe
Kurosawa M., Shimano S., Ishii S., Shima K., and Kato T. Geochim. Cosmochim. Acta 67 (2003) 4337
Kurosawa M., Shimano S., Ishii S., Shima K., and Kato T. Nucl. Instr. and Meth. B 210 (2003) 464
Zaw K., Hunns S.R., Large R.R., Gemmell J.B., Ryan C.G., and Mernagh T.P. Chem. Geol. 194 (2003) 225
Ryan C.G., van Achterbergh E., Yeats C.J., Drieberg S.L., Mark G., McInnes B.M., Win T.T., Cripps G., and Suter G.F. Nucl. Instr. and Meth. B 188 (2002) 18
Maxwell J.A., Campbell J.L., and Teesdale W.J. Nucl. Instr. and Meth. B 43 (1989) 218
Maxwell J.A., Teesdale W.J., and Campbell J.L. Nucl. Instr. and Meth. B 95 (1995) 407
Horn E.E., and Traxel K. Chem. Geol. 61 (1987) 29
Ryan C.G., Heinrich C.A., and Mernagh T.P. Nucl. Instr. and Meth. B 77 (1993) 463
Ryan C.G. Nucl. Instr. and Meth. B 158 (1999) 523
Menez B., Philippot P., Bonnin-Mosbah M., and Gibert F. Nucl. Instr. and Meth. B 158 (1999) 523
Räisänen J. Nucl. Instr. and Meth. B 49 (1990) 39
Demortier G., Mathot S., and Van Oystaeyen B. Nucl. Instr. and Meth. B 49 (1990) 46
M. Mayer in: J.L. Duggan, I.L. Morgan (Eds.), Proceedings of the 15th ICAARI, AIP Conference Proceedings 475, 1999, p. 541.
Khodja H., Berthoumieux E., Daudin L., and Gallien J.-P. Nucl. Instr. and Meth. B 181 (2001) 83
Hermann F., and Grambole D. Nucl. Instr. and Meth. B 104 (1995) 26
K. Kouzmanov, J.M. Beny, C. Ramboz, L. Bailly, in: Proceedings of ABCD-GEODE 2000, Borovets, Bulgaria, 2000, p. 38.
Bruhn F., Möller A., Sie S.H., and Hensen B.J. Nucl. Instr. and Meth. B 158 (1999) 616