© 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
All documents in ORBi are protected by a user license.
Abstract :
[en] A method is proposed to reconstruct and track network state from a limited number of Phasor Measurement Unit (PMU) data. To deal with the resulting unobservability, the state with bus powers and generator voltages closest to previously estimated values is computed. Those values, treated as pseudomeasurements, are obtained from the last reconstructed state, in a recursive manner. The method involves solving an optimization problem with linear constraints. It is scalable insofar as it accommodates from a few PMUs up to configurations ensuring full network observability. Reconstruction of only a region is possible. These and other features are demonstrated on the Nordic32 test system, with synchronized phasors obtained from detailed time simulation of a situation evolving towards instability. Suitable choices of PMU location and pseudo-measurements are also discussed.
Scopus citations®
without self-citations
38