[en] The upper Hölder index has been introduced to describe smoothness properties of a continuous function. It can be seen as the irregular counterpart of the usual Hölder index and has been used to investigate the behavior at the origin of the modulus of smoothness in many classical cases. In this paper, we prove a characterization of the upper Hölder index in terms of wavelet coefficients. This result is a first step in the estimation of this exponent using wavelet methods.
Disciplines :
Mathematics
Author, co-author :
Clausel, Marianne
Nicolay, Samuel ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
A Wavelet Characterization for the Upper Global Hölder Index
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adler, R. J.: The Geometry of Random Field. Wiley, New York (1981).
Berman, S. M.: Gaussian sample functions: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46, 63-86 (1972).
Berman, S. M.: Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23(1), 69-86 (1973).
Bousch, T., Heurteaux, Y.: On oscillations of Weierstrass-type functions. Manuscript (1999).
Bousch, T., Heurteaux, Y.: Caloric measure on domains bounded by Weierstrass type graphs. Ann. Acad. Sci. Fenn. Math. 25(2), 501-522 (2000).
Bardet, J. M., Bertrand, P.: Definition, properties and wavelet analysis of multiscale fractional Brownian motion. Fractals 15(1), 73-87 (2007).
Benassi, A., Bertrand, P., Cohen, S., Istas, J.: Identification of the Hurst index of a step fractional Brownian motion. Stat. Inference Stoch. Process. 3(1), 101-111 (2000).
Clausel, M.: Lacunary fractional Brownian motion. To appear in ESAIMPS (2010).
Clausel, M., Nicolay, S.: Wavelet techniques for pointwise anti-Hölderian irregularity. Constr. Approx. 33(1), 41-75 (2011).
Clausel, M., Nicolay, S.: Some prevalent results about strongly monoHölder functions. Nonlinearity 23(9), 2101-2116 (2010).
Coeurjolly, J. F.: Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4, 199-227 (2001).
Coeurjolly, J. F.: Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Ann. Stat. 36, 1404-1434 (2008).
Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909-996 (1988).
Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992).
Flandrin, P.: Wavelet analysis of fractional Brownian motion. IEEE Trans. Inf. Theory 38(2), 910-917 (1992).
Heurteaux, Y.: Weierstrass function with random phases. Trans. Am. Math. Soc. 355(8), 3065-3077 (2003).
Heurteaux, Y.: Weierstrass function in Zygmund's class. Proc. Am. Math. Soc. 133(9), 2711-2720 (2005).
Istas, J., Lang, G.: Quadratic variations and estimation of the Hölder index of a Gaussian process. Ann. Inst. Poincaré Probab. Stat. 33, 407-436 (1997).
Jaffard, S.: Construction et propriétés des bases d'ondelettes. Remarques sur la controlabilité exacte. Ph. D. thesis (1989).
Jaffard, S.: Wavelet techniques in multifractal analysis, fractal geometry and applications. In: Proc. Symp. Pure Math. AMS, Providence (2004).
Jaffard, S., Meyer, Y.: Wavelets methods for pointwise regularity and local oscillations of functions. Mem. Am. Math. Soc. 123, 587 (1996).
Kahane, J. P.: Geza Freud and lacunary Fourier series. J. Approx. Theory 46(1), 51-57 (1986).
Ken, J. T., Wood, A. T. A.: Estimating the fractal dimension of a locally self-similar Gaussian process using increments. J. R. Stat. Soc. Ser. B 59, 679-700 (1997).
Khintchine, A.: Ein Satz der Wahrscheinlichkeitsrechnung. Fundam. Math. 6, 9-20 (1924).
Krantz, S. G.: Lipschitz spaces, smoothness of functions, and approximation theory. Expo. Math. 3, 193-260 (1983).
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998).
Meyer, Y.: Ondelettes et Opérateurs. Hermann, Paris (1990).
Samorodnitsky, G., Taqqu, M. S.: Stable Non-Gaussian Random Processes. Chapman & Hall, London (1994).
Stoev, S., Taqqu, M., Park, C., Michailidis, G., Marron, J. S.: LASS: a tool for the local analysis of self-similarity. Comput. Stat. Data Anal. 50, 2447-2471 (2006).
Weiss, M.: On the law of iterated logarithm for lacunary trigonometric series. Trans. Am. Math. Soc. 91, 444-469 (1959).
Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129-157 (1997).
Xiao, Y.: Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV, 157-193 (2005).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.