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Abstract The upper Hölder index has been introduced to describe smoothness prop-
erties of a continuous function. It can be seen as the irregular counterpart of the usual
Hölder index and has been used to investigate the behavior at the origin of the mod-
ulus of smoothness in many classical cases.

In this paper, we prove a characterization of the upper Hölder index in terms of
wavelet coefficients. This result is a first step in the estimation of this exponent using
wavelet methods.

Keywords Uniform Hölder regularity · Uniform Hölder irregularity · Discrete
wavelet transform
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1 Introduction

One of the most popular concept of uniform regularity is the uniform Hölder regular-
ity, defined from the uniform Hölder spaces Cα(Rd). For any α ∈ (0,1), a bounded
function f belongs to Cα(Rd) if there exist C,R > 0 such that

sup
|x−y|≤r

|f (x) − f (y)| ≤ Crα,
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for any r ∈ [0,R]. This notion can be generalized for exponents greater than one
(see Sect. 2.1). It has been widely used to study smoothness properties of classical
models such as trigonometric series (see e.g. [22, 30]) and sample paths properties of
processes (amongst these processes, let us cite the Brownian motion (see [24]) and
the fractional Brownian motion (see e.g. [28]).

In many classical cases, the smoothness behavior of the investigated model is very
simple. The studied function f is both uniformly Hölder and uniformly anti-Hölder,
i.e. there exist C,R > 0 such that

C−1rα ≤ inf
x

sup
|y−x|≤r

|f (x) − f (y)| ≤ sup
x

sup
|x−y|≤r

|f (x) − f (y)| ≤ Crα

for any r ≤ R (see [9] and [10] for more details) and the smoothness properties of f

can be characterized using a single index,

H = lim
r→0

log sup|x−y|≤r |f (x) − f (y)|
log r

.

There are many well-known examples of such models (see [4, 5, 16, 17, 22, 30] for
trigonometric series and [1–3, 6, 7, 31, 32] for sample paths of the FBM or some of
its extensions).

Nevertheless, the smoothness properties of the model can be much more complex:
in many cases, the uniform modulus of smoothness ω1

f of f , that is the map

ω1
f : r �→ sup

|x−y|≤r

|f (x) − f (y)|,

is quite general and can be “erratic”. This is for example the case with the φ–SNLD
Gaussian models (see [31, 32]) or the lacunary fractional Brownian motion (see [8]),
for which the uniform modulus of smoothness may be a general function that is not
possible to estimate. It is then more convenient to describe the smoothness properties
of the model using two indices:

H = lim inf
r→0

log sup|x−y|≤r |f (x) − f (y)|
log r

(1)

and

H = lim sup
r→0

log sup|x−y|≤r |f (x) − f (y)|
log r

, (2)

related to the behavior of the uniform modulus of smoothness of f near 0.
Even in the case of Gaussian models, the estimation of these two indices is still an

open problem. If the two indices H and H are both equal to some H ∈ (0,1), meth-
ods based on the wavelet decomposition or on discrete filtering (which has several
similarities with the wavelet decomposition method) have proved to be often very
efficient. The reader is referred to Flandrin (see [15]), Stoev et al. (see [29]) and the
references therein for more informations on the wavelet-based methods and to Kent
and Wood (see [23]), Istas and Lang (see [18]) and Coeurjolly (see [11, 12]) for more
informations about quadratic variations-based methods.

The present work is a first step in the estimation of the two indices H and H
in the general case. For this purpose, we investigate the relationship between these
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two Hölder indices and the wavelet decomposition of a function. The answer is well-
known for the index H (see [27] and Theorem 1 below). The main result of this paper
is a characterization of the index H, called the upper Hölder exponent, by means of
wavelets (see Theorem 3 and Corollary 4). Therefore, the results of the present paper
should pave the way to the estimation of the indices H and H using wavelet methods.

This paper is organized as follows. In Sect. 2, we briefly recall the different con-
cepts for uniform regularity and irregularity. Section 3 is devoted to the statement
of our main results about the characterization of uniform irregularity by means of
wavelets. Finally, Sect. 4 contains the proofs of the results stated in Sect. 3.

2 Upper and Lower Global Hölder Indices

In this section we first give the usual definition of global Hölder index, denoted here
lower global Hölder index in order to make a distinction with the upper global Hölder
index, which will be introduced afterward.

The definitions rely on the finite differences. For a function f : Rd → R and
x,h ∈ Rd , the first order difference of f is

�1
hf (x) = f (x + h) − f (x).

The difference of order M , where M is an integer greater than 2, is iteratively defined
by

�M
h f (x) = �M−1

h �1
hf (x).

Let us introduce some notations. Given α > 0, [α] will denote the greatest integer
lower than α. Throughout this paper, M will designate the integer M = [α] + 1 and
we associate to a bounded function f : Rd → R its M-modulus of smoothness ωM

f :

ωM
f : r �→ sup

|h|≤r

sup
x∈Rd

|�M
h f (x)|

2.1 The Lower Global Hölder Index

Let us recall the well-known notion of lower global Hölder index, usually called
global Hölder index or uniform Hölder index.

Definition 1 Let α > 0 and β ∈ R. The bounded function f belongs to Cα
β (Rd), if

there exist C,R > 0 such that

ωM
f (r) ≤ Crα|log r|β, (3)

for any r ≤ R. If β = 0, the space Cα
0 (Rd) is simply denoted Cα(Rd).

A function f is said to be uniformly Hölderian if for some α > 0, f ∈ Cα(Rd).

The above definition leads to a notion of global regularity.

Definition 2 The lower global Hölder exponent of a uniformly Hölderian function f

is defined as

Hf = sup{α > 0, f ∈ Cα(Rd)}.
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2.2 The Upper Global Hölder Index

The irregularity of a function can be studied through the notion of upper global
Hölder index. The idea is to reverse inequality (3).

Definition 3 Let f : Rd → R be a bounded function, α ≥ 0 and β ∈ R; f ∈ UIα
β(Rd)

if there exist C,R > 0 such that

ωM
f (r) ≥ Crα|log r|β (4)

for any r ≤ R. If β = 0, the set UIα
0 (Rd) is simply denoted UIα(Rd). A function

belonging to UIα(Rd) is said to be uniformly irregular with exponent α.

Definition 4 The upper global Hölder exponent (or uniform irregularity exponent)
of a bounded function f is

Hf = inf{α : f ∈ UIα(Rd)}.

Let us remark that the statement (4) is not a negation of the property f ∈ Cα(Rd).
Indeed f does not belong to Cα(Rd) if for any C > 0, there exists a decreasing
sequence (rn)n (depending on C) converging to 0 for which

ωM
f (rn) ≥ Crα

n .

We are thus naturally led to the following definition.

Definition 5 Let f : Rd → R be a bounded function, α ≥ 0, β ∈ R; f ∈ Cα
w,β(Rd) if

f /∈ UIα
β(Rd), i.e. for any C > 0 there exists a decreasing sequence (rn)n converging

to 0 such that

ωM
f (rn) ≤ Crα

n |log rn|β,

for any n ∈ N. In the case where β = 0, the set Cα
w,0(R

d) is denoted Cα
w(Rd). A func-

tion belonging to Cα
w(Rd) is said to be weakly uniformly Hölderian with exponent α.

Roughly speaking, a function is weakly uniformly Hölderian with exponent α if
for any C > 0, one can bound the M-modulus of smoothness ωM

f of f over Rd by

θ(rn) = Crα
n |log rn|β for a remarkable decreasing sequence (rn)n of scales, whereas

for an Hölderian function, the M-modulus of smoothness of f over Rd has to be
bounded at each scale r > 0 by θ(r), for some C > 0.

3 A Wavelet Criterium for Uniform Irregularity

In this section we claim that both the lower and upper index of a bounded function
can be characterized by means of wavelets.

Author's personal copy



754 J Fourier Anal Appl (2012) 18:750–769

3.1 The Discrete Wavelet Transform

Let us briefly recall some definitions and notations (for more precisions, see e.g.
[13, 26, 27]). Under some general assumptions, there exists a function φ and 2d − 1
functions (ψ(i))1≤i<2d , called wavelets, such that {φ(x − k)}k∈Zd ∪ {ψ(i)(2j x − k) :
1 ≤ i < 2d, k ∈ Zd , j ∈ Z} form an orthogonal basis of L2(Rd). Any function f ∈
L2(Rd) can be decomposed as follows,

f (x) =
∑

k∈Zd

Ckφ(x − k) +
+∞∑

j=1

∑

k∈Zd

∑

1≤i<2d

c
(i)
j,kψ

(i)(2j x − k),

where

c
(i)
j,k = 2dj

∫

Rd

f (x)ψ(i)(2j x − k) dx,

and

Ck =
∫

Rd

f (x)φ(x − k) dx.

Let us remark that we do not choose the L2(Rd) normalization for the wavelets, but
rather an L∞ normalization, which is better fitted to the study of the Hölderian regu-
larity. Hereafter, the wavelets are always supposed to belong to Cγ (Rd) with γ suf-
ficiently large (we require at least γ > α) and the functions {∂sφ}|s|≤γ , {∂sψ(i)}|s|≤γ

are assumed to have fast decay. Furthermore, in Rd we will use the tensor product
wavelet basis (see [14, 27] and Sect. 4.2).

A dyadic cube of scale j is a cube of the form

λ =
[

k1

2j
,
k1 + 1

2j

)
× · · · ×

[
kd

2j
,
kd + 1

2j

)
,

where k = (k1, . . . , kd) ∈ Zd . From now on, wavelets and wavelet coefficients will be
indexed with dyadic cubes λ. Since i takes 2d − 1 values, we can assume that it takes
values in {0,1}d \ {(0, . . . ,0)}; we will use the following notations:

• λ = λ(i, j, k) = k
2j + i

2j+1 + [0, 1
2j+1 )d ,

• cλ = c
(i)
j,k ,

• ψλ = ψ
(i)
j,k = ψ(i)(2j · −k).

To state our wavelet criteria, we will use the following notation: for any j ≥ 0, we
set

‖c(·)
j,·‖∞ = sup

i∈{0,1}d\{(0,...,0)}
sup
k∈Zd

|c(i)
j,k|.

3.2 Wavelets and Usual Uniform Regularity

The characterization of the lower global Hölder index in terms of wavelet coefficients
is well-known.

The uniform Hölderian regularity of a function is closely related to the decay rate
of its wavelet coefficients. Let us recall the following result (see [27]).
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Theorem 1 Let α > 0 such that α 
∈ N. We have f ∈ Cα(Rd) if and only if there
exists C > 0 such that

{∀k ∈ Zd, |Ck| ≤ C,

∀j ≥ 0, ‖c(·)
j,·‖∞ ≤ C2−jα.

(5)

This theorem yields a wavelet characterization of the lower Hölder index of a
uniformly Hölderian function.

Corollary 2 Assume that f is a uniformly Hölderian function; we have

Hf = lim inf
j→∞

log2‖c(·)
j,·‖∞

−j
.

3.3 Wavelets and Uniform Irregularity

In this section, we aim at characterizing the uniform irregularity of a bounded func-
tion in terms of wavelets.

The main result if this paper is the following theorem.

Theorem 3 Let α > 0 and f be a bounded function on Rd . If there exists C > 0 such
that for any integer j ≥ 0,

max

(
sup
�≥j

‖c(·)
�,·‖∞,2−jM sup

�≤j

(2�M‖c(·)
�,·‖∞)

)
≥ C2−jα, (6)

then f ∈ UIα(Rd).
Conversely, if f is uniformly Hölderian and if for β > 1, f belongs to UIα

β(Rd),
then there exists C > 0 such that relation (6) holds for any j ≥ 0.

Let us make some remarks.

Remark 1 Unlike the case of usual uniform Hölderian regularity, the case where α is
a natural number is not a specific one.

Remark 2 The assumptions of Theorem 3 are indeed optimal. See Appendix for more
details.

Remark 3 The condition

‖c(·)
j,·‖∞ ≥ C2−jα,

for some C > 0 and any j ≥ 0 is a sufficient (but not necessary) condition for uniform
irregularity. In the general case,

Hf 
= lim sup
j→+∞

log2‖c(·)
j,·‖∞

−j
.
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Following Theorem 1, a bounded function f is not uniformly Hölderian with ex-
ponent α, i.e. its M-modulus of smoothness is bounded from below by θ(rn) for some
specific decreasing sequence (rn) converging to 0, if and only if a similar property
holds for its wavelet coefficients. The situation is completely different concerning
uniform irregularity: the value of the M-modulus of smoothness at r = 2−j is in-
fluenced by the wavelet coefficients at scales below and above the scale 2−j . The
M-modulus of smoothness of f can be large at r = 2−j for any j ∈ N (even if for
some scales j , the coefficients (c

(i)
j,k) are small or even vanish) provided that for any

j ∈ N, at a controlled distance of the scale 2−j , there exists some large wavelet coef-
ficients. Such a behavior is met with the lacunary fractional Brownian motion, which
admits some vanishing wavelet coefficients but that is almost surely locally uniformly
irregular (see [8] for more details).

Theorem 3 leads to a wavelet characterization of the upper Hölder exponent.

Corollary 4 If f is a uniformly Hölderian function, then

Hf = lim sup
j→∞

log2 max(sup�≥j ‖c(·)
�,·‖∞,2−jM sup�≤j (2

�M‖c(·)
�,·‖∞))

−j
. (7)

Proof One directly checks that if α is defined by the right-hand side of (7), Theorem 3
implies that f ∈ UIα+ε(Rd) for any ε > 0 and f /∈ UIα−ε(Rd) for any ε > 0 such
that α − ε ≥ 0. The conclusion is then straightforward. �

4 Proof of Theorem 3

Theorem 3 comes from a wavelet characterization (up to a logarithmic term) of the
weak uniform Hölderian regularity. We first need to reformulate the property f ∈
Cα

w(Rd) in terms of a modulus of continuity θ (defined by equality (12)), in order to
obtain the following result.

Proposition 5 Let α > 0;

1. If f ∈ Cα
w(Rd) then, for any C > 0, there exists a strictly increasing sequence of

integers (jn)n∈N such that for any n ≥ 0 and any j ∈ {jn, . . . , jn+1 − 1},
sup

|λ|=2−j

|cλ| ≤ C′C inf(2−jnα,2(M−α)jn+12−jM), (8)

for some C′ > 0 depending only on the chosen wavelet basis.
2. Conversely, if f is uniformly Hölderian and if for any C > 0, there exists a strictly

increasing sequence of integers (jn)n∈N such that (8) holds then f ∈ Cα
w,β(Rd)

for any β > 1.

Next, we have to modify Proposition 5 by replacing the spaces Cα
w,β(Rd) with

UIα
β(Rd). This can be done thanks to the following lemma.
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Lemma 6 The two following assertions are equivalent:

1. the wavelet coefficients of f do not satisfy property (8),
2. there exists C′ > 0 and an integer j0 such that, for any j ≥ j0,

max
(

sup
�≥j

sup
|λ|=2−�

|cλ|,2−jM sup
�≤j

(
2�M sup

|λ|=2−�

|cλ|
))

≥ C′θ(2−j ), (9)

where θ is defined by equality (12).

Once these results obtained, it is easy to show that if inequality (6) holds, then
f /∈ Cα

w(Rd) and that if f is uniformly Hölderian and satisfies f /∈ Cα
w,β(Rd) for

β > 1, then relation (6) holds.

4.1 A Reformulation of the Property f ∈ Cα
w(Rd)

To prove Proposition 5, we first need to reformulate in a more appropriate way the
property f ∈ Cα

w(Rd).
Since modulus of smoothness ωM

f is a non-decreasing function, f ∈ Cα
w(Rd) if

and only if, for any C > 0, there exists an increasing sequence of integers (jn)n∈N
such that for any r ∈ (2−jn+1 ,2−jn] (n ∈ N),

ωM
f (r) = sup

|h|≤r

sup
x∈Rd

|�M
h f (x)| ≤ C2−jnα. (10)

Now, let � denote a piecewise constant function of the form

�(r) =
∑

n∈N

2−jnαχ
(2−jn+1 ,2−jn ](r),

where χA is the characteristic function of the set A. The function f belongs to
Cα

w(Rd) if and only if, for any C > 0, C� is an upper bound of the M-modulus
of smoothness ωM

f of f .
This characterization of the weak uniform regularity is not convenient to deal with,

since

lim sup
r→0

�(2r)

�(r)

may be infinite. To overcome this problem, in the next proposition we will reformu-
late the property f ∈ Cα

w(Rd), giving a finer upper bound of ωM
f . To this end, let us

remark that there is a link between the finite differences of f at different scales.

Proposition 7 The bounded function f belongs to Cα
w(Rd) if and only if for any

C > 0, there exists a strictly increasing sequence of integers (jn)n∈N such that for
any j ∈ {jn, . . . , jn+1 − 1},

sup
|h|≤2−j

sup
x∈Rd

|�M
h f (x)| ≤ C inf(2−jnα,2M(jn+1−j)2−jn+1α). (11)

Proof Let us first assume that (10) holds. Since

�M
2hf (x) =

M∑

k=0

(
M

k

)
�M

h f (x + kh),
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we have

ωM
f (2r) = sup

|h|≤2r

sup
x∈Rd

|�M
h f (x)| ≤ 2M sup

|h|≤r

sup
x∈Rd

|�M
h f (x)| = 2MωM

f (r).

This inequality together with (10) imply that for any j ∈ {jn, . . . , jn+1 − 1},
ωM

f (2−j ) = ωM
f (2jn+1−j 2−jn+1)

≤ 2M(jn+1−j)ωM
f (2−jn+1) ≤ C2M(jn+1−j)2−jn+1α.

Hence, relation (11) holds. The converse assertion is obvious. �

Let us now remark that the piecewise function θ defined (on (0,2−j1 ]) as

θ(r) =
∑

n∈N

inf(2−jnα,2jn+1(M−α)rM)χ
(2−jn+1 ,2−jn ](r) (12)

is a continuous function. Furthermore it satisfies additional interesting properties
summed up in the following proposition.

Proposition 8 Let α > 0 and (jn)n∈N be an increasing sequence of integers. Let θ

be defined by equality (12). The function θ obeys the following properties:

1. θ is a modulus of continuity, that is a non decreasing continuous function satisfy-
ing

lim sup
r→0

θ(2r)

θ(r)
< ∞, (13)

2. for any β > 1 and for any J sufficiently large, the following relations are satisfied:

J∑

j=j1

2Mjθ(2−j ) ≤ CJ2MJ θ(2−J ), (14)

∑

j≥J

θ(2−j )|log θ(2−j )|β
jβ

≤ CJβθ(2−J ), (15)

2−Mj = o(θ(2−j )) as j → ∞. (16)

Proof We first prove that θ is a modulus of continuity by showing that

θ(2r) ≤ 2Mθ(r). (17)

Assume that there exists some n ∈ N such that

2−jn+1 ≤ r ≤ 2−jn−1.

Since 2−jn+1+1 ≤ 2r ≤ 2−jn , one has

θ(2r) = inf(2−jnα,2jn+1(M−α)(2r)M) ≤ 2Mθ(r).

On the other hand, if for some n ∈ N, one has

2−jn−1 ≤ r ≤ 2−jn ,
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then 2−jn ≤ 2r ≤ 2−jn+1 and thus

θ(2r) = inf(2−jn−1α,2jn(M−α)(2r)M)

≤ 2M(2jnr)M2−jnα = 2M2jn(M−α)rM.

Since M − α > 0, one has

2M2jn(M−α)rM ≤ 2M2jn+1(M−α)rM.

Moreover, since r ≤ 2−jn ,

2M(2jnr)M2−jnα ≤ 2M2−jnα,

hence,

θ(2r) ≤ 2M inf(2−jnα,2jn+1(M−α)rM).

In any case, relation (17) holds, which directly implies (13).
Let us now prove the second part of Proposition 8. Let J ∈ N and n0 ∈ N such that

jn0 ≤ J ≤ jn0+1 − 1. Let us first show that property (14) is satisfied. By definition,
we have

J∑

j=j1

2Mjθ(2−j ) =
n0−1∑

n=0

jn+1−1∑

j=jn

2Mj inf(2−jnα,2jn+1(M−α)2−jM)

+
J−1∑

j=jn0

2Mj inf(2−jn0 α,2jn0+1(M−α)2−jM).

Therefore,

J∑

j=j1

2Mjθ(2−j ) ≤
n0−1∑

n=0

jn+12jn+1(M−α) + J inf(2MJ 2−jn0α,2jn0+1(M−α)),

that is
J∑

j=j1

2Mjθ(2−j ) ≤ jn0 2jn0 (M−α) + J inf(2MJ 2−jn0 α,2jn0+1(M−α))

≤ 2J inf(2MJ 2−jn0α,2jn0+1(M−α)),

which shows that property (14) holds.
We now check inequality (15). Since

θ(2−j ) ≤ 2−jnα

for any n ≥ n0 and any j ∈ {jn, . . . , jn+1 − 1}, we have

∞∑

j=J

θ(2−j )|log θ(2−j )|β
jβ

≤
jn0+1−1∑

j=J

θ(2−j )|log θ(2−j )|β
jβ

+
∞∑

n=n0+1

jn+1−1∑

j=jn

2−jnα|log(2−jnα)|β
jβ
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=
jn0+1−1∑

j=J

θ(2−j )|log θ(2−j )|β
jβ

+ C

∞∑

n=n0+1

2−jnαjβ
n

jn+1−1∑

j=jn

1

jβ
.

Using equality (12), we get

∞∑

j=J

θ(2−j )|log θ(2−j )|β
jβ

≤ C

jn0+1−1∑

j=J

inf(jβ
n0 2−jn0α, jβ2jn0+1(M−α)2−jM)

jβ

+ C

∞∑

n=n0+1

jβ
n 2−jnα

jn+1−1∑

j=jn

1

jβ
. (18)

Moreover, since

∞∑

n=n0+1

jβ
n 2−jnα

jn+1−1∑

j=jn

1

jβ
≤

∞∑

n=n0+1

jn2−jnα ≤ jn0+12−jn0+1α,

inequality (18) yields

∞∑

j=J

θ(2−j )|log θ(2−j )|β
jβ

≤ C

jn0+1−1∑

j=J

inf(jβ
n0 2−jn0α, jβ2jn0+1(M−α)2−jM)

jβ

+ Cjn0+12−jn0+1α

≤ C′(inf(jn0 2−jn0α ,2jn0+1(M−α)2−JM)

+ jn0+12−jn0+1α)

≤ C′Jβθ(2−J ).

Since M > α, relation (16) is straightforward. �

Remark 4 The concept of modulus of continuity has been used in [21] to deal with
a more general notion of uniform Hölderian regularity than the usual one, induced
by the Hölder spaces. For a given M and a given modulus of continuity θ , a wavelet
characterization of the property

ωM
f (r) ≤ Cθ(r) (19)

for any r ≥ 0 is provided under the two following assumptions on θ : for any J ≥ 0,

J∑

j=0

2jMθ(2−j ) ≤ C′2JMθ(2−J ) (20)

and
∞∑

j=J

2j (M−1)θ(2−j ) ≤ C′2J (M−1)θ(2−J ). (21)
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Properties (20) and (21) are much stronger than properties (14), (15) and (16), which
concern the weak uniform regularity of a function f .

4.2 Proof of Proposition 5

We shall split the proof into two parts.

Proposition 9 Let α > 0; if f ∈ Cα
w(Rd) then, for any C > 0, there exists a

strictly increasing sequence of integers (jn)n∈N such that for any n ≥ 0 and any
j ∈ {jn, . . . , jn+1 − 1},

sup
|λ|=2−j

|cλ| ≤ C′Cθ(2−j ),

for some C′ > 0 depending only on the chosen wavelet basis, where θ is the function
defined by equality (12).

Proof Assume that f belongs to Cα
w(Rd) and let C > 0. By Proposition 7, we have

for any r sufficiently small,

ωM
f (r) ≤ Cθ(r). (22)

If d = 1, let us recall (see [20]) that if the wavelet basis belongs to CM(Rd) then
there exists a function �M with fast decay and such that ψ = �M

1
2

�M . In dimension

d > 1, we use the tensor product wavelet basis:

ψ(i)(x) = �(1)(x1) · · ·�(d)(xd),

where for all i, �(i) are either ψ or φ but at least one of them must equal ψ . For
example, assume that �(1) = ψ . Then, for any i ∈ {1, . . . ,2d − 1}, any j ≥ 0 and any
k ∈ Zd ,

c
(i)
j,k = 2jd

∫

Rd

f (x)�(1)(2j x1 − k1) · · ·�(d)(2j xd − kd) dx.

We thus have

c
(i)
j,k = 2jd

∫

Rd

f (x)�M
1/2�M(2j x1 − k1) · · ·�(d)(2j xd − kd) dx

= 2jd

∫

Rd

�M
1/2j+1e1

f (x)�M(2j x1 − k1) · · ·�(d)(2j xd − kd) dx,

with e1 = (1,0, . . . ,0) and therefore

|c(i)
j,k| ≤ 2jd

∫

Rd

|�M
1/2j+1e1

f (x)||�M(2j x1 − k1) · · ·�(d)(2j xd − kd)|dx.

We thus get, using inequality (22),

|c(i)
j,k| ≤ C2jdθ(2−(j+1))

∫

Rd

|�M(2j x1 − k1) · · ·�(d)(2j xd − kd)|dx.

Setting y = 2j x − k in the last integral, we obtain

2jd

∫

Rd

|�M(2j x1 − k1) · · ·�(d)(2j xd − kd)|dx = ‖�M ⊗ · · · ⊗ �(d)‖L1(Rd ).
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Since θ is a non-decreasing function, we can write

|c(i)
j,k| ≤ Cθ(2−j )‖�M‖L1(Rd ),

which ends the proof. �

From now on in this section, we suppose that f is uniformly Hölderian and that
property (8) is satisfied. For the second part of the proof, we need to introduce the
following notations:

f−1(x) =
∑

k∈Zd

Ckϕ(x − k), fj (x) =
2d−1∑

i=1

∑

k∈Zd

c
(i)
j,kψ(2j x − k), (23)

with j ≥ 0. Since f is uniformly Hölderian, fj , as defined by equality (23), converges
uniformly on any compact to a limit which has the same regularity as the wavelets.
Furthermore

∑
j≥−1 fj (x) converges uniformly on any compact. The proof is based

on the following lemma which provides an upper bound for ‖∂γ fj (x)‖L∞(Rd ), for
any |γ | ≤ M .

Lemma 10 Let m ∈ {0, . . . ,M}; there exists some C′ > 0 depending only on m and
on the chosen wavelet basis such that for any γ ∈ Nd satisfying |γ | = m and for j

sufficiently large,

‖∂γ fj (x)‖L∞(Rd ) ≤ C′C2jm inf

(
θ(2−j ),

θ(2−j )|log θ(2−j )|β
jβ

)
,

where θ is the function defined by equality (12).

Proof Since f satisfies Property (8), one has

|c(i)
j,k| ≤ Cθ(2−j ), (24)

for j sufficiently large. Furthermore, since f is uniformly Hölderian,
∣∣log |c(i)

j,k|
∣∣ ≥ C′j, (25)

for some C′ > 0 and j sufficiently large. Now, using the trivial relation

|c(i)
j,k| = inf

(
|c(i)

j,k|,
|c(i)

j,k||log |c(i)
j,k||β

|log |c(i)
j,k||β

)
,

inequalities (24) and (25) leads to

|c(i)
j,k| ≤ inf

(
θ(2−j ),

θ(2−j )|log θ(2−j )|β
jβ

)
.

Therefore, for any integer p > d ,

|∂αfj (x)| =
∣∣∣∣∣

2d−1∑

i=1

∑

k∈Zd

c
(i)
j,k2jm∂αψ(i)(2j x − k)

∣∣∣∣∣

≤ C′C2jm

2d−1∑

i=1

∑

k∈Zd

inf(θ(2−j ),
θ(2−j )|log θ(2−j )|β

jβ )

(1 + |2j x − k|)p ,
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using the fast decay of the wavelets. The use of the classical bound

sup
x∈Rd

∑

k∈Zd

1

(1 + |2j x − k|)p < ∞

ends the proof of this lemma. �

Proposition 11 Let α > 0; if f is uniformly Hölderian and if for any C > 0, there
exists a strictly increasing sequence of integers (jn)n∈N such that (8) holds, let h ∈ Rd

and define J = sup{jn : |h| < 2−jn}. We have, for h sufficiently small,

|�M
h f (x)| ≤ C′Jβθ(2−J ), (26)

where θ is the function defined by equality (12).

Proof Let us set

g1 =
j1−1∑

j=−1

fj (x), g2 =
J−1∑

j=j1

fj , and g3 =
∞∑

j=J

�M
h fj (x).

For any j ≥ −1, fj has the same regularity as the wavelets and so does g1. Therefore,
we can suppose that g1 belongs to Cη(Rd) with M < η /∈ N and for any r > 0,

ωM
g1

(r) ≤ C′rM,

(see e.g. [25]). Using relation (16), we get that inequality (26) holds for f = g1.
Let us now consider the case f = g2. Lemma 10 with m = M leads to the inequal-

ity

|∂γ fj (x)| ≤ C′C2jMθ(2−j )

for any γ such that |γ | = M and for any j1 ≤ j ≤ J − 1. Furthermore, for any j ,
fj ∈ Cη(Rd) which can be considered as a subset of the homogeneous Hölder space
Ċη(Rd) (see e.g. [27]). Therefore,

|�M
h fj (x)| ≤ |h|M

∑

|γ |=M

‖∂γ fj‖L∞(Rd ),

for any j ≥ j1. We thus have
∣∣∣∣∣

J−1∑

j=j0

�M
h fj (x)

∣∣∣∣∣ ≤ C′C|h|M
J−1∑

j=j0

2jMθ(2−j ).

Using relation (14), we get
∣∣∣∣∣

J−1∑

j=j0

�M
h fj (x)

∣∣∣∣∣ ≤ C′C|h|MJ2JMθ(2−J ) ≤ C′CJθ(2−J ).

We have thus proved that the function g2 satisfies inequality (26).
For g3, let us apply lemma 10 with m = 0 to obtain

∣∣∣∣∣

∞∑

j=J

�M
h fj (x)

∣∣∣∣∣ ≤ C′C
∞∑

j=J

θ(2−j )|log θ(2−j )|β
jβ

.
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By inequality (15), we have
∣∣∣∣∣

∞∑

j=J

�M
h fj (x)

∣∣∣∣∣ ≤ C′CJβθ(2−J ).

The results concerning g1, g2 and g3 put together show that the function f satisfies
inequality (26), which ends the proof. �

4.3 Proof of Lemma 6

Let us show that property (8) is equivalent to the negation of property (9). Indeed
by definition, the wavelet coefficients of f satisfy property (8) if and only if for any
C > 0, there exists an increasing sequence of integers (jn)n∈N such that

sup
i,k

|c(i)
j,k| ≤ C inf(2−jnα,2jn+1(M−α)2−jM),

for any n ∈ N and any j ∈ {jn, . . . , jn+1 − 1}. This statement can be reformulated as
follows: for any C > 0, there exists an increasing sequence of integers (jn)n∈N such
that for any n ∈ N,

sup
�≥jn

sup
i,k

|c(i)
�,k| ≤ C2−jnα

and

sup
j0≤�≤jn+1

2�M sup
i,k

|c(i)
�,k| ≤ C2jn+1(M−α).

Let us set

n0 = inf
{
n ∈ N : sup

0≤�≤j0

(
2�M sup

i,k

|c(i)
�,k|

)
≤ C2jn+1(M−α)

}
.

Replacing the sequence jn by �n = jn+n0+1, property (8) is equivalent to the exis-
tence, for any C > 0, of a strictly increasing sequence of integers (jn)n∈N such that
for any n ∈ N,

sup
�≥jn

sup
i,k

|c(i)
�,k| ≤ C2−jnα,

and

sup
�≤jn

2�M sup
i,k

|c(i)
�,k| ≤ C2jn(M−α).

To conclude, observe that the last property is equivalent to the existence, for any
C > 0 and any j0 ∈ N, of some j1 > j0 such that

sup
�≥j1

sup
i,k

|c(i)
�,k| ≤ C2−j1α

and

sup
�≤j1

2�M sup
i,k

|c(i)
�,k| ≤ C2j1(M−α).

Since this is the negation of relation (9), the lemma is proved.
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Appendix: Optimality of the Assumptions of Theorem 3

We prove here the optimality of the assumptions of Proposition 5 and thus of Theo-
rem 3. To this end we use two counter-examples already introduced in [19].

A.1 A Uniform Irregular Function Satisfying Property (8)

Let α ∈ (0,1), �0 ∈ N and define the two following sequences of integers (jn)n∈N and
(jn,α)n∈N as

⎧
⎪⎨

⎪⎩

j1 = �0,

jn+1 = [ 1
1−α

2jnα − jnα], ∀n ≥ 1,

jn,α = [2jnα], ∀n ≥ 1.

We aim at proving the following result.

Proposition 12 Let us assume that the multiresolution analysis is compactly sup-
ported. Let ε ∈ (0,1) and �0 be such that supp(ψ) ⊂ [−2�0,2�0]. Furthermore, let us
assume that ψ(0) 
= 0. The function f defined as

f (x) =
∞∑

n=0

2−jnα

jn,α∑

j=jn

jn,α∑

�=j+2

�−εψ
(
2�(x − 2−(j−�0))

)

+
∞∑

n=0

2jn+1(1−α)

jn+1−1∑

j=jn,α+1

jn+1∑

�=j+2

2−��−εψ
(
2�(x − 2−(j−�0))

)

+
∞∑

n=0

2−jn+1α

jn+1−1∑

j=jn,α+1

jn+1,α∑

�=jn+1

�−εψ
(
2�(x − 2−(j−�0))

)

satisfies the following properties:

1. f is not a uniformly Hölderian function,
2. the wavelet coefficients of f satisfy property (8),
3. f is uniformly irregular with exponent β , where

β = max

(
αε,

αε

(1 − α) + αε

)
< α. (27)

Proof The two first properties being straightforward, we just have to prove that f is
uniformly irregular with exponent β . Let n ∈ N and define

fj (x) =
jn,α∑

�=j+2

�−εψ
(
2�(x − 2−(j−�0))

)
,

for j ∈ {jn, . . . , jn,α} and

fj (x) =
jn+1∑

�=j+2

2−��−εψ
(
2�(x − 2−(j−�0))

) +
jn+1,α∑

�=jn+1

�−εψ
(
2�(x − 2−(j−�0))

)
,
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for j ∈ {jn,α, . . . , jn+1 − 1}. We need to estimate

f (2−(j−�0)) − f (0) = f (2−(j−�0))

for any j ∈ N. First, observe that for j 
= j ′, supp(fj ) ∩ supp(fj ′) = ∅. Indeed for
any j , we have

supp(fj ) ⊂ [3.2−(j+2−�0),5.2−(j+2−�0)]
and hence f (2−(j−�0)) − f (0) = fj (2−(j−�0)) for any j ∈ N.

We now distinguish two cases. Let us first assume that j ∈ {jn, . . . , jn,α}; we have

f (2−(j−�0)) = 2−jnα

jn,α∑

�=j+2

�−εψ(0) ≥ 2−jnα((jn,α + 1)1−ε − (j + 2)1−ε)

Therefore, if jn ≤ j ≤ jn,α/2,

f (2−(j−�0)) ≥ 2−jnα(jn,α + 1)1−ε(1 − 2−(1−ε)) ≥ C′2−jαε,

whereas if jn,α/2 ≤ j ≤ jn,α ,

f (2−(j−�0)) ≥ 2−jnαj−ε
n,α ≥ j−1−ε.

Gathering these inequalities, we have, for any j ∈ {jn, . . . , jn,α},
f (2−(j−�0)) ≥ C′2−jαε. (28)

Let us now consider the second case, where j ∈ {jn,α + 1, . . . , jn+1 − 1} for some
n ∈ N. We have

f (2−(j−�0)) =
(

2jn+1(1−α)

jn+1∑

�=j+2

2−��−ε + 2−jn+1α

jn+1,α∑

�=jn+1

�−ε

)
ψ(0).

If one remarks that

f (2−(j−�0)) ≥ C′(2jn+1(1−α)2−j j−ε + 2−jn+1αj1−ε
n+1,α)

= C′(2jn+1(1−α)2−j j−ε + 2−jn+1αε),

then for any jn,α + 1 ≤ j ≤ ((1 − α) + αε)jn+1, we get

f (2−(j−�0)) ≥ C′2j 1−α
(1−α)+αε 2−j j−ε = C′2−j αε

(1−α)+αε j−ε, (29)

whereas if ((1 − α) + αε)jn+1 ≤ j ≤ jn+1 − 1,

f (2−(j−�0)) ≥ C′2−jn+1αε ≥ C′2−j αε
(1−α)+αε . (30)

Inequalities (28), (29) and (30) together imply f ∈ UIβ(Rd). �

A.2 Necessity of the Logarithmic Correction in the Wavelet Criteria

Let ε,α ∈ (0,1), β > 1 and define (jn)n∈N as

jn = [βn],
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for any n ∈ N. Let us also define the function fα,β,ε on R as follows,

fα,β,ε(x) =
∞∑

n=0

jn+1∑

j=jn+1

inf(2−jnα,2jn+1(1−α)2−j )

j ε
sin(2jπx). (31)

We first give an estimation of the wavelet coefficients (cj,k) of fα,β,ε .

Proposition 13 Assume that the multiresolution analysis is the Meyer multiresolu-
tion analysis. Then for n ≥ 1, any j ∈ {jn, . . . , jn+1 − 1} and any C > 0,

sup
k∈Z

|cj,k| ≤ C inf(2−jnα,2jn+1(1−α)2−j ), (32)

for n sufficiently large.

Proof Let n ∈ N and � ∈ {jn, . . . , jn+1 − 1}. By definition of the wavelet coefficients
of a bounded function, we have

c�,k = 2�

∫

Rd

fα,β,ε(x)ψ(2�x − k) dx.

Since the trigonometric series fα,β,ε is uniformly converging on any compact,

c�,k = 2�

∞∑

n=0

jn+1∑

j=jn+1

inf(2−jnα,2jn+1(1−α)2−j )

j ε

∫

Rd

sin(2jπx)ψ(2�x − k) dx,

or

c�,k = 2�

2i

∞∑

n=0

jn+1∑

j=jn+1

inf(2−jnα,2jn+1(1−α)2−j )

j ε

×
∫

Rd

(ei2j πx − e−i2j πx)ψ(2�x − k) dx,

that is,

c�,k =
∞∑

n=0

jn+1∑

j=jn+1

inf(2−jnα,2jn+1(1−α)2−j )

j ε

× ei2j−�kπ ψ̂(2j−�k) − e−i2j−�kπ ψ̂(−2j−�k)

2i
. (33)

Since the Meyer wavelet belongs to the Schwartz class, its Fourier transform is sym-
metric and compactly supported with

supp(ψ̂) ⊂
[
−8π

3
,−2π

3

]
∪

[
2π

3
,

8π

3

]
,

the sum in equality (33) contains at most five terms corresponding to

k ∈ {� − log2(k), � − log2(k) + 1, � − log2(k) + 2, � − log2(k) + 3,

� − log2(k) + 4}.
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One directly checks that for any n ∈ N, j ∈ {jn, . . . , jn+1 − 1}, this implies inequal-
ity (32). �

Let us now prove the uniform irregularity properties of the functions fα,β,ε .

Proposition 14 For any β > 1 and any (α, ε) ∈ (0,1)2, fα,β,ε ∈ UIα
1−ε(R).

Proof Let us remark that it is sufficient to prove that for any � ∈ N,

fα,β,ε(2
−�) ≥ 2−α��1−ε. (34)

Let n0 ∈ N and � ∈ {jn0+1, . . . , jn0+1}. By definition, we have

fα,β,ε(2
−�) =

n0−1∑

n=0

jn+1∑

j=jn+1

inf(2−jnα,2jn+1(1−α)2−j )

j ε
sin(2j 2−�π)

+
�−1∑

j=jn0+1

inf(2−jn0α,2jn0+1(1−α)2−j )

j ε
sin(2jπ2−�).

The classical inequality sin(x) ≥ (2/π)x valid for any x ∈ [0,π/2] leads to the fol-
lowing inequality if jn0 + 1 ≤ � ≤ jn0+1,

fα,β,ε(2
−�) ≥

�−1∑

j=jn0 +1

inf(2−jnα,2jn+1(1−α)2−j )

j ε
2j−�

≥ 2.2−� inf(2−jn0 α2��1−ε, �1−ε2jn0+1(1−α))

≥ 2 inf(�1−ε2−jn0α, �1−ε2−�2jn0+1(1−α)).

Let t ∈ (1, β) such that � = tjn0 , that is jn0 = �/t . We get

fα,β,ε(2
−�) ≥ 2 inf(�1−ε2−� α

t , �1−ε2−�(1− β�
t

+ αβ�
t

)).

Since

sup
t∈[1,β]

max(α/t,1 − β�/t + αβ�/t) ≤ α,

inequality (34) is satisfied for any � ∈ N. �

Propositions 13 and 14 together imply the following proposition.

Proposition 15 For any (α, ε,β) ∈ (0,1)2 × (1,+∞), the functions fα,β,ε defined
by the relation (31) are uniformly Hölderian, satisfy (8) and belong to UIα

1−ε(R).
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