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Abstract The upper Holder index has been introduced to describe smoothness prop-
erties of a continuous function. It can be seen as the irregular counterpart of the usual
Holder index and has been used to investigate the behavior at the origin of the mod-
ulus of smoothness in many classical cases.

In this paper, we prove a characterization of the upper Holder index in terms of
wavelet coefficients. This result is a first step in the estimation of this exponent using
wavelet methods.

Keywords Uniform Hoélder regularity - Uniform Holder irregularity - Discrete
wavelet transform

Mathematics Subject Classification (2000) 26A16 - 42C40

1 Introduction

One of the most popular concept of uniform regularity is the uniform Holder regular-
ity, defined from the uniform Holder spaces C¢ (R?). For any « € (0, 1), a bounded
function f belongs to C¢ (Rd) if there exist C, R > 0 such that

sup | f(x) — f(nI=Cre,

lx—yl=r
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for any r € [0, R]. This notion can be generalized for exponents greater than one
(see Sect. 2.1). It has been widely used to study smoothness properties of classical
models such as trigonometric series (see e.g. [22, 30]) and sample paths properties of
processes (amongst these processes, let us cite the Brownian motion (see [24]) and
the fractional Brownian motion (see e.g. [28]).

In many classical cases, the smoothness behavior of the investigated model is very
simple. The studied function f is both uniformly Holder and uniformly anti-Holder,
i.e. there exist C, R > 0 such that

C™'r% <inf sup |f(x)— f)| <sup sup |f(x)— f(y)|<Cr®

ly—x|<r X |x=yl=r

for any » < R (see [9] and [10] for more details) and the smoothness properties of f
can be characterized using a single index,

H = lim logsup, <, [f(x) — f(y)l.
r—0 logr

There are many well-known examples of such models (see [4, 5, 16, 17, 22, 30] for
trigonometric series and [1-3, 6, 7, 31, 32] for sample paths of the FBM or some of
its extensions).

Nevertheless, the smoothness properties of the model can be much more complex:
in many cases, the uniform modulus of smoothness a)} of f, that is the map

wpire sup | f(x)— O,
lx—yl=r
is quite general and can be “erratic”. This is for example the case with the p—SNLD
Gaussian models (see [31, 32]) or the lacunary fractional Brownian motion (see [8]),
for which the uniform modulus of smoothness may be a general function that is not
possible to estimate. It is then more convenient to describe the smoothness properties
of the model using two indices:

logsupj,_y <, [/ () — f VI

‘H =liminf (D
r—0 logr
and
_ logsup,,_, x) —
H=limsup g p|x }|§r|f( ) f(y)l, (2)

. logr

related to the behavior of the uniform modulus of smoothness of f near 0.

Even in the case of Gaussian models, the estimation of these two indices is still an
open problem. If the two indices 7 and 7 are both equal to some H € (0, 1), meth-
ods based on the wavelet decomposition or on discrete filtering (which has several
similarities with the wavelet decomposition method) have proved to be often very
efficient. The reader is referred to Flandrin (see [15]), Stoev et al. (see [29]) and the
references therein for more informations on the wavelet-based methods and to Kent
and Wood (see [23]), Istas and Lang (see [18]) and Coeurjolly (see [11, 12]) for more
informations about quadratic variations-based methods.

The present work is a first step in the estimation of the two indices  and H
in the general case. For this purpose, we investigate the relationship between these
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two Holder indices and the wavelet decomposition of a function. The answer is well-
known for the index H (see [27] and Theorem 1 below). The main result of this paper
is a characterization of the index 7, called the upper Holder exponent, by means of
wavelets (see Theorem 3 and Corollary 4). Therefore, the results of the present paper
should pave the way to the estimation of the indices 7 and 7 using wavelet methods.
This paper is organized as follows. In Sect. 2, we briefly recall the different con-
cepts for uniform regularity and irregularity. Section 3 is devoted to the statement
of our main results about the characterization of uniform irregularity by means of
wavelets. Finally, Sect. 4 contains the proofs of the results stated in Sect. 3.

2 Upper and Lower Global Hélder Indices

In this section we first give the usual definition of global Holder index, denoted here
lower global Holder index in order to make a distinction with the upper global Holder
index, which will be introduced afterward.

The definitions rely on the finite differences. For a function f : R? — R and
x, h € R?, the first order difference of f is

AbF@) = fx+h) — fx).

The difference of order M, where M is an integer greater than 2, is iteratively defined
by

AM F)=AMTIALF ().

Let us introduce some notations. Given « > 0, [«] will denote the greatest integer

lower than «. Throughout this paper, M will designate the integer M = [«] + 1 and

we associate to a bounded function f : R — R its M-modulus of smoothness a)}’l :

a)y Ir > sup sup |A2/If(x)|
|h|<r xeRd

2.1 The Lower Global Holder Index

Let us recall the well-known notion of lower global Holder index, usually called
global Holder index or uniform Holder index.

Definition 1 Let o > 0 and 8 € R. The bounded function f belongs to Cg (RY), if
there exist C, R > 0 such that
o (r) < Cr®logr|’, 3)
for any r < R.If B = 0, the space Cj (R?) is simply denoted C*(R?).
A function f is said to be uniformly Hélderian if for some a > 0, f € C*(RY).

The above definition leads to a notion of global regularity.

Definition 2 The lower global Holder exponent of a uniformly Holderian function f
is defined as

H, =supla >0, f € C*(R")}.

Birkhauser
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2.2 The Upper Global Holder Index

The irregularity of a function can be studied through the notion of upper global
Holder index. The idea is to reverse inequality (3).

Definition 3 Let f : R? — R be a bounded function, & > 0 and BeR; fe UI‘; (Rd)
if there exist C, R > 0 such that
o} (r) = Cr¥[logr|” 4
for any r < R. If B =0, the set UI%(R?) is simply denoted UI*(R¢). A function
belonging to UI* (RY) is said to be uniformly irregular with exponent a.
Definition 4 The upper global Holder exponent (or uniform irregularity exponent)
of a bounded function f is
Hy =infla: f € UI*(R?)).
Let us remark that the statement (4) is not a negation of the property f € C*(R%).

Indeed f does not belong to C*(RY) if for any C > 0, there exists a decreasing
sequence (), (depending on C) converging to 0 for which

a)}/l (ra) = Cry.
We are thus naturally led to the following definition.

Definition 5 Let f : R? — R be a bounded function,« >0, 8 € R; f € C]‘f)’ﬂ(Rd) if

fé¢ UI% (RY), i.e. for any C > 0 there exists a decreasing sequence (r,,), converging
to O such that

o (ry) < Cry [logry |’
for any n € N. In the case where § = 0, the set CZ‘) O(Rd) is denoted C;, (Rd). A func-

tion belonging to C3y (RY) is said to be weakly uniformly Hélderian with exponent .

Roughly speaking, a function is weakly uniformly Holderian with exponent « if
for any C > 0, one can bound the M-modulus of smoothness a)’}” of f over R? by

O(ry) = Cri|logry, |# for a remarkable decreasing sequence (r,), of scales, whereas
for an Holderian function, the M-modulus of smoothness of f over R? has to be
bounded at each scale r > 0 by 0(r), for some C > 0.

3 A Wavelet Criterium for Uniform Irregularity

In this section we claim that both the lower and upper index of a bounded function
can be characterized by means of wavelets.

Birkhauser
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3.1 The Discrete Wavelet Transform

Let us briefly recall some definitions and notations (for more precisions, see e.g.
[13, 26, 27]). Under some general assumptions, there exists a function ¢ and 2¢ — 1
functions (), _; _,a, called wavelets, such that {¢ (x — k)}ycza U {2/ x — k) :
1<i<29keZ? jeZ) form an orthogonal basis of L?(R?). Any function f
L%(R%) can be decomposed as follows,

+00 ) ) '
fO =Y CGop—k+>. 3" Y HyPeix—n),

kezd J=1keZd 1<i<2d

where
c;{;{ —di /Rd FOvD@2Ix —k)dx,
and

o =/ FEOS — k) dx.
Rd

Let us remark that we do not choose the L2(Rd) normalization for the wavelets, but
rather an L normalization, which is better fitted to the study of the Holderian regu-
larity. Hereafter, the wavelets are always supposed to belong to C¥ (RY) with y suf-
ficiently large (we require at least y > «) and the functions {3°¢}s|<), {B‘Yt/f(i)}\ sl<y
are assumed to have fast decay. Furthermore, in R? we will use the tensor product
wavelet basis (see [14, 27] and Sect. 4.2).

A dyadic cube of scale j is a cube of the form

|:k1 k1+1> |:kd kd—i-l)

A=|—, - X X | = - s

27 27 2J 2]

where k = (kq,...,kg) € Z¢ . From now on, wavelets and wavelet coefficients will be

indexed with dyadic cubes A. Since i takes 2¢ — 1 values, we can assume that it takes
values in {0, 1}¢\ {(0, ..., 0)}; we will use the following notations:

o A=Al j.k) =%+ 55 +10. 5407,
® C) = C;l}c,
o Y=y =y k).
To state our wavelet criteria, we will use the following notation: for any j > 0, we
set

Il =" sup  sup |} 1.
i€{0,1}9\{(0,...,0)} keZd

3.2 Wavelets and Usual Uniform Regularity

The characterization of the lower global Holder index in terms of wavelet coefficients
is well-known.

The uniform Holderian regularity of a function is closely related to the decay rate
of its wavelet coefficients. Let us recall the following result (see [27]).

Birkhauser
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Theorem 1 Let o > 0 such that o & N. We have f € C*(R?) if and only if there
exists C > 0 such that

VkeZ!, |Gl =C,
, 0 —ja )
Vj=0, ”cj,.”oofcz 1%,
This theorem yields a wavelet characterization of the lower Holder index of a
uniformly Holderian function.

Corollary 2 Assume that f is a uniformly Holderian function; we have
log, ¢ |
My = liminf ——2>
Jj— 00 -]
3.3 Wavelets and Uniform Irregularity
In this section, we aim at characterizing the uniform irregularity of a bounded func-

tion in terms of wavelets.
The main result if this paper is the following theorem.

Theorem 3 Let o > 0 and f be a bounded function on RY. If there exists C > 0 such
that for any integer j > 0,

max(sup lleg llo. 277 supM |} ||oo>> > 27, 6)
= e<j

then f € UI*(RY).
Conversely, if f is uniformly Holderian and if for B > 1, f belongs to UI%‘ (RY),
then there exists C > 0 such that relation (6) holds for any j > 0.

Let us make some remarks.

Remark 1 Unlike the case of usual uniform Holderian regularity, the case where « is
a natural number is not a specific one.

Remark 2 The assumptions of Theorem 3 are indeed optimal. See Appendix for more
details.
Remark 3 The condition

e 100 = €277,

for some C > 0 and any j > 0 is a sufficient (but not necessary) condition for uniform
irregularity. In the general case,

O]
_ logy e
H ¢ # limsup 2 J: =,
’ Jj—>4o00 —J
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Following Theorem 1, a bounded function f is not uniformly Hélderian with ex-
ponent &, i.e. its M-modulus of smoothness is bounded from below by 6(r;,) for some
specific decreasing sequence (r,,) converging to 0, if and only if a similar property
holds for its wavelet coefficients. The situation is completely different concerning
uniform irregularity: the value of the M-modulus of smoothness at » =27/ is in-
fluenced by the wavelet coefficients at scales below and above the scale 27/. The
M-modulus of smoothness of f can be large at r =27/ for any j € N (even if for
some scales j, the coefficients (c;.'}{) are small or even vanish) provided that for any

J €N, at a controlled distance of the scale 2-J, there exists some large wavelet coef-
ficients. Such a behavior is met with the lacunary fractional Brownian motion, which
admits some vanishing wavelet coefficients but that is almost surely locally uniformly
irregular (see [8] for more details).

Theorem 3 leads to a wavelet characterization of the upper Holder exponent.

Corollary 4 If f is a uniformly Holderian function, then

logy max (sups ; llef” floos 277 sup,<; 2 ¢l [1o0))

H £ =limsup @)

j—o00 —J

Proof One directly checks that if « is defined by the right-hand side of (7), Theorem 3
implies that f € UI**¢(R?) for any ¢ > 0 and f ¢ UI*~¢(R?) for any & > 0 such
that « — & > 0. The conclusion is then straightforward. O

4 Proof of Theorem 3

Theorem 3 comes from a wavelet characterization (up to a logarithmic term) of the
weak uniform Holderian regularity. We first need to reformulate the property f €
ce (R?) in terms of a modulus of continuity 8 (defined by equality (12)), in order to
obtain the following result.

Proposition 5 Ler o > 0;

1. If feCy (RY) then, for any C > 0, there exists a strictly increasing sequence of

integers (jn)neN such that for any n > 0 and any j € {ju, ..., jat1 — 1},
sup ¢, | < C'Cinf(2= /% 2M=@jn+1p=M)y @)
|Al=277

for some C' > 0 depending only on the chosen wavelet basis.

2. Conversely, if f is uniformly Holderian and if for any C > 0, there exists a strictly
increasing sequence of integers (jn)neN such that (8) holds then f € Cl‘f)’ ﬁ(Rd)
forany g > 1.

ext, we have to modify Proposition replacing the spaces wit
N h dify Proposition 5 by replacing the sp Cl‘f)’ﬂ(Rd) ith
UI‘; (R%). This can be done thanks to the following lemma.
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Lemma 6 The two following assertions are equivalent:

1. the wavelet coefficients of f do not satisfy property (8),
2. there exists C' > 0 and an integer jo such that, for any j > jo,

max(sup sup |ck|,2_stup(2eM sup |c;L|)>ZC/9(2_j), 9)
£z |r|=2"¢ t=j [A]=2-¢

where 0 is defined by equality (12).

Once these results obtained, it is easy to show that if inequality (6) holds, then
fé¢csy (R?) and that if f is uniformly Holderian and satisfies f ¢ Cy. ﬂ(Rd) for
B > 1, then relation (6) holds.

4.1 A Reformulation of the Property f € Cj, (RY)

To prove Proposition 5, we first need to reformulate in a more appropriate way the
property f € C (RY).

Since modulus of smoothness @’ is a non-decreasing function, f € CJ (RY) if
and only if, for any C > 0, there exists an increasing sequence of integers (j,)neN
such that for any r € (27/+1,27/»] (n € N),

wy(r) = sup sup |[AM f(x)| < C27n®, (10)

|h|<r xeR4

M

Now, let ® denote a piecewise constant function of the form

O =Y 27" Y it 2 ()
neN
where x4 is the characteristic function of the set A. The function f belongs to
cy (RY) if and only if, for any C > 0, C® is an upper bound of the M-modulus
of smoothness w¥ of f.
This characterization of the weak uniform regularity is not convenient to deal with,
since

. O(2r)
lim sup
r—0 ) (7‘ )
may be infinite. To overcome this problem, in the next proposition we will reformu-

late the property f € CJ (R?), giving a finer upper bound of w" . To this end, let us
remark that there is a link between the finite differences of f at different scales.

Proposition 7 The bounded function f belongs to Cg, (RY) if and only if for any
C > 0, there exists a strictly increasing sequence of integers (jn)neN Such that for

Cll’lyj € {jn’ RN jn-‘rl - 1}’
sup sup [AM f(x)| < Cinf(2 I, 2MUnt1=Dp=Jnr10y, (1)
|h|<2~J xeR4
Proof Let us first assume that (10) holds. Since
M

M
A f) =) ( L )Ai,”f(x +kh),

k=0
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we have

w}/’(Zr) = sup sup |A2’If(x)| <2M sup sup |A£’If(x)| =2Mw}4(r).

|h|<2r xeR4 |h|<r xeRd
This inequality together with (10) imply that for any j € {j,, ..., jun+1 — 1},
wlfVI (2*1') — w;’l (2]n+1 *J.Z*jnJrl)
< 2M(jn+1—j)w}/1(2—jn+1) < C2MUnt1=Dp—Jnt1

Hence, relation (11) holds. The converse assertion is obvious. Il

Let us now remark that the piecewise function 6 defined (on (0,27/1]) as
O(r) =y _inf(2 =, 2t M= My g @) (12)
neN

is a continuous function. Furthermore it satisfies additional interesting properties
summed up in the following proposition.

Proposition 8 Let o > 0 and (j,)neN be an increasing sequence of integers. Let 6
be defined by equality (12). The function 6 obeys the following properties:

1. 0 is a modulus of continuity, that is a non decreasing continuous function satisfy-
ing

. 6(2r)
lim sup < 00,
r—0 0(r)

2. forany B > 1 and for any J sufficiently large, the following relations are satisfied:

13)

J
> Mg iy <ci2Mee), (14)
J=i
—j L
s YCeIE DL crtoay, (1)
j=J J
27Mi=00@27)) asj— oo. (16)

Proof We first prove that 6 is a modulus of continuity by showing that
02r) <2Mo(r). (17)
Assume that there exists some n € N such that
2~ Jn+1 <r< —Jn—1
Since 2 /1Tl <2 < 27Jn_one has
0(2r) = inf(2 =/ 21 (M=) )My < oM (),
On the other hand, if for some n € N, one has

2_jn_] <r< z_jn ,
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then 27/ < 2r <27/»*1 and thus

0(2r) = inf(2 /1% 2in(M=a) ()M

< oM QinypyMp=inet — M pjn(M=0) M
Since M — « > 0, one has
oM in (M=) M M ju1 (M) .M
Moreover, since r < 2 Jn,
oM @nyyMo=ine < pMp=inet,
hence,
0(2r) < 2M inf(2 e 2inr1(M—a) My

In any case, relation (17) holds, which directly implies (13).

Let us now prove the second part of Proposition 8. Let / € N and ng € N such that
Jng = J < jng+1 — 1. Let us first show that property (14) is satisfied. By definition,
we have

J ) ) no—1 jn+1—1 ) ) ) )
Z 2M]9(2_]) _ Z Z Mj inf(2~/n?, 2]n+1(M—0t)2—]M)
j=h n=0 j=jn
J—1
+ Z 2MJ inf(2 =m0 g+ (M—Oé)z—./'M).
jzjno
Therefore,
J no—1
Z 2Mig2=7y < Z Jpgr 20 M=e) 4 g inf(2M7 = dng® | Qingt1(M—e)y
J= n=0
that is
J .
Z 2Mig2—7y < jn02jn0 (M=) 4 Jinf(QM7 2~ Ing® 2Jngt1(M=0)y
J=i

<27 inf(@M 72 ng® pingr1 M=)y

which shows that property (14) holds.
We now check inequality (15). Since

9(2—1) < 2—Jn@

for any n > ng and any j € {j,, ..., ju+1 — 1}, we have
'n -1 : ;
= 002" f)uoge(z NIE "GN 0@ llogs2)#
Z - < jB
j=J j=J
oo Jnt1—1 2—jn01|10g(2—jn0t)|/3
+ .ﬂ
n=no+1 j=in /
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0+l -

Z Yo f)uoge(z |l

Jnt1—1

+CZZ’"“ﬁZ]ﬁ

n=no+1 J=Jn
Using equality (12), we get
1 ' | |
iB
j=J J

iee f>|log9<2 7P

j=J

<C

00 ' Jn+1—1 1
+C Yl 3 — (18)
n=no+1 i=in !

Moreover, since

inequality (18) yields

jn0+1_1

inf(jf()z*f"oo‘ , jﬁ2/n0+l (M—Oé)z—jM)

= 0(27)|logs 277
Z j,B

jﬁ

<C

~.
Il
~

j=J
+ Cling412 no+1®

< C/(inf(jno 2~ Jnga , 2Jng+1 (M—a)z—JM)
+ Jng 127001

<C'7Po2™).

Since M > «, relation (16) is straightforward. O

Remark 4 The concept of modulus of continuity has been used in [21] to deal with
a more general notion of uniform Holderian regularity than the usual one, induced
by the Holder spaces. For a given M and a given modulus of continuity 8, a wavelet
characterization of the property

o (r) <CO(r) (19)
for any r > 0 is provided under the two following assumptions on 6: for any J > 0,
J
> 2iMgeiy < c'2Mo ) (20)
j=0
and
0 . .
ZzﬂM—l)e(z—f) <C2/M=Dg—y, (21)

=l
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Properties (20) and (21) are much stronger than properties (14), (15) and (16), which
concern the weak uniform regularity of a function f.

4.2 Proof of Proposition 5
We shall split the proof into two parts.

Proposition 9 Let o > 0; if f € C%(Rd) then, for any C > 0, there exists a
strictly increasing sequence of integers (jn)neN Such that for any n > 0 and any

je {j}'ly'--»jn-‘rl - 1}’

sup |ci| < C'COQRTY),
e

for some C' > 0 depending only on the chosen wavelet basis, where 0 is the function
defined by equality (12).

Proof Assume that f belongs to CY (R%) and let C > 0. By Proposition 7, we have
for any r sufficiently small,

w}4 (r) < CO(r). (22)

If d =1, let us recall (see [20]) that if the wavelet basis belongs to CM(RY) then
there exists a function Wy, with fast decay and such that ¢ = A W), In dimension
2

d > 1, we use the tensor product wavelet basis:
O =D - v P (xg),
where for all i, W) are either ¥ or ¢ but at least one of them must equal . For
example, assume that v = Y. Then, foranyi € {1, ..., 2d _ 1}, any j > 0 and any
keZ?,
e\ = 2/’df FEWD QI x — k) WD (2 xy — kg)dx.
. Rd
We thus have

=2 fRd FEAY Wy 2Tx — k) WD (2 xg — kq) dx
=2/ /R A FEBM Q51— k) WD Qg — k) dx,
with e; = (1,0, ..., 0) and therefore
j$ <274 /R |AY 1o, F NN QT 51 = k) WD (2 xg — ko)l dx.,
We thus get, using inequality (22),
el < c2/dp2~U+D) /Rd (W 2y —ky) - WD (2 xg — k)| dx.
Setting y = 2/x — k in the last integral, we obtain

2/4 / (War (21 — ki) WD Qg —ka)ldx = Wy @ - @ W 11 ga).
R
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Since 6 is a non-decreasing function, we can write
%l < COQTNIWM 11 ey,
which ends the proof. O

From now on in this section, we suppose that f is uniformly Holderian and that
property (8) is satisfied. For the second part of the proof, we need to introduce the
following notations:

241
fa@ =) CGex -k,  fim=Y Y Ny@x—k. @3
keZd i=1 rezd

with j > 0. Since f is uniformly Holderian, f;, as defined by equality (23), converges
uniformly on any compact to a limit which has the same regularity as the wavelets.
Furthermore > j=—1Jj(x) converges uniformly on any compact. The proof is based
on the following lemma which provides an upper bound for [0 f;(x)]l o), for
any |y| < M.

Lemma 10 Ler m € {0, ..., M}; there exists some C' > 0 depending only on m and
on the chosen wavelet basis such that for any y € N satisfying |y| = m and for j
sufficiently large,

. Q2 )|logo2=)|P
||an,-<x>||Loo(Rd>SC’czf'"inf(eef), (@7 )llog8(27)] )

iB
J
where 0 is the function defined by equality (12).

Proof Since f satisfies Property (8), one has

4 < co), (24)
for j sufficiently large. Furthermore, since f is uniformly Holderian,
Jlog ¢4 1| = €' (25)

for some C’ > 0 and j sufficiently large. Now, using the trivial relation
" o e Y Ilog e 117
eyl =inf( e, ——rt ),
loglcy 1P
inequalities (24) and (25) leads to

; 02 )|logo 27y |P
|c§-’,i|sinf(e<z—f>, ( )"}gﬂ( ) )

Therefore, for any integer p > d,

241

Yo > haimyry D ix — k)

i=1 keZd

10% f7 ()| =

‘ 2d 1 inf(@(z_j), l9(27/')|10_§1719(27j)|’3)
<c'cam Yy S ,
B , (1+12/x —k|)P

i=1 keZd
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using the fast decay of the wavelets. The use of the classical bound
1

sup Z—<oo

verd S (1 + [2/x — k|)P

ends the proof of this lemma. |

Proposition 11 Let o > O; if f is uniformly Holderian and if for any C > 0, there
exists a strictly increasing sequence of integers (ju)neN such that (8) holds, let h € R?
and define J = sup{j, : |h| < 27/n}. We have, for h sufficiently small,

Al o< cafee™), (26)

where 0 is the function defined by equality (12).

Proof Let us set
Ji—1 J—1 00
gi=) fi), g=) fj, and g=) A ).
j=—1 =i j=J
Forany j > —1, f; has the same regularity as the wavelets and so does g1. Therefore,
we can suppose that g; belongs to C"(R?) with M < n ¢ N and for any r > 0,

a)gll(r) <c'rM

(see e.g. [25]). Using relation (16), we get that inequality (26) holds for f = g;.
Let us now consider the case f = g. Lemma 10 with m = M leads to the inequal-

ity
197 f;(x)| < C'C2/Mp(277)
for any y such that |y| = M and for any j; < j < J — 1. Furthermore, for any j,

fieC 7(R?) which can be considered as a subset of the homogeneous Holder space
C"(R?) (seee. g. [27]). Therefore,

AN £ @L< RIM D 107 £l oo ra)-

lyl=M
for any j > j;. We thus have
J—1 J—1
Z A fi0| <c’cip™ Z 2iMg 2~ 7).
J=Jo J=Jo

Using relation (14), we get
J—1
> AN fi)

J=Jo

<C'ClhMJ2’Mo2="y < C'cI0277).

We have thus proved that the function g, satisfies inequality (26).
For g3, let us apply lemma 10 with m = 0 to obtain

B
<CC29(2 ’)I10g9(2 J)I

Z AN ()
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By inequality (15), we have

o
YA fiw|=ccrfoe™).
j=J
The results concerning g1, g2 and g3 put together show that the function f satisfies
inequality (26), which ends the proof. g

4.3 Proof of Lemma 6

Let us show that property (8) is equivalent to the negation of property (9). Indeed
by definition, the wavelet coefficients of f satisfy property (8) if and only if for any
C > 0, there exists an increasing sequence of integers (j,),eN such that

Sukp |C§l;(| < Cinf(2~Jn® pJnt1(M=e)p=jMy
i,

forany n e N and any j € {j, ..., jut+1 — 1}. This statement can be reformulated as
follows: for any C > 0, there exists an increasing sequence of integers (j,),eN such
that for any n € N,

sup sup |c§’3{| <2 e
ey ik
and

sup 2™ sup |c213{| < C2imr1 M=)
Jo=t=jn+1 ik

Let us set

no = inf{n eN: sup (ZEM sup |c§i3{|> < C2j"+‘(M_°‘)}.
0<t<jo ik

Replacing the sequence j, by £, = juino+1, property (8) is equivalent to the exis-
tence, for any C > 0, of a strictly increasing sequence of integers (j,),eN such that
for any n € N,

sup sup |c§l}<| < C2 I,
L>jn ik

and

sup ZZM sup |C§l;<| < Czjn(M*Ol).
< jn ik ’

To conclude, observe that the last property is equivalent to the existence, for any
C > 0 and any jp € N, of some j; > jo such that

sup sup |c23{| <C2 e
e=j1 ik

and

sup 2 sup Icﬁ{| < C2iM=)
<1 ik

Since this is the negation of relation (9), the lemma is proved.
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Appendix: Optimality of the Assumptions of Theorem 3

We prove here the optimality of the assumptions of Proposition 5 and thus of Theo-
rem 3. To this end we use two counter-examples already introduced in [19].

A.1 A Uniform Irregular Function Satisfying Property (8)

Leta € (0, 1), £o € N and define the two following sequences of integers (jj,;),eN and
(Jn,a)neN as

J1="{o,
ot = [7520% — jual, Vn>1,
Jno = [2jna]’ Vn > 1.
We aim at proving the following result.
Proposition 12 Let us assume that the multiresolution analysis is compactly sup-

ported. Let ¢ € (0, 1) and £q be such that supp(y) C [—2%, 240, Furthermore, let us
assume that ¥ (0) #£ 0. The function f defined as

Jn.e ]nat
fx)= 22 Jnc Z Z 0 W 2((x 2—G- 50)))
n=0 J=int=j+2

Jn+1=1  jng

+Zzln+1(1 —a) Z Z 2—Lp— I/f 2€(x —G— @0)))

J=Jnat1L=j+2

Jnr1—1 Jntle

+ Zz*jnﬂa Z Z g*sw(zﬁ(x _ 2*(1'750)))
n=0

j:jn.a+1 szn-%—l
satisfies the following properties:
1. f is not a uniformly Holderian function,

2. the wavelet coefficients of f satisfy property (8),
3. f is uniformly irregular with exponent 3, where

oe
ﬁ :maX(OlE, m) <. (27)

Proof The two first properties being straightforward, we just have to prove that f is
uniformly irregular with exponent 8. Let n € N and define

jl‘l,d
i)=Y eyl —27Uy),
e=j+2
for j € {jn,-.., jno) and
Jn+1 ])H»lot
=3 27ty 2 — 27U ¢ 3T ey (20 —27U),
= j+2 = /n+1
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for j € {jn.as---» jn+1 — 1}. We need to estimate
F@7UTON) = fO) = f@TUT)

for any j € N. First, observe that for j # j’, supp(f;) N supp(fj) = . Indeed for
any j, we have

supp(f;) C [3.27U27) 5. 0=(+2=to))
and hence f(2~U~) — £(0) = f;(27U~1) forany j € N.

We now distinguish two cases. Let us first assume that j € {j,, ..., jn.«}; We have
. . jn’a .
FQTUTON =27 YT Y (0) 2 270 (DT = (D)
=j+2

Therefore, if ]n =< ] =< jn,a/z,
f(z—(]—ﬁo)) > zijna(jn,a + ])178(1 _ 2*(175)) > (/*/2*].(187
whereas if j; /2 < j < jn.as

f@UT) > g je > e

Gathering these inequalities, we have, for any j € {j,, ..., ju.a}
feUTy = 2, (28)
Let us now consider the second case, where j € {j,.o + 1, ..., jut1 — 1} for some
n € N. We have
jn+1 jn+1,a
f(zf(jfeo)) — (zjnﬂ(la) Z 2~tp—e 4 pJnr1a Z £€>W(O)-
l=j+2 £=jnt1

If one remarks that
f(z—(j—@())) > C/(zjn+1(1—0t)2—jj—8 + 2—jn+10tj’:i?’a)
— C/(zjn+1(1—0t)2—jj—€ + 2—J'n+101é3)7

then for any j, o +1 < j < ((1 — ) + €) jn+1, we get

FU0)y > ¢l a0 j=¢ = /o~ t=awar (29)

whereas if (1 — o) + &) jus1 < j < jux1 — 1,
F@U—W) > craminnies > ¢y T (30)
Inequalities (28), (29) and (30) together imply f € urf (Rd). O

A.2 Necessity of the Logarithmic Correction in the Wavelet Criteria
Lete,a € (0,1), 8 > 1 and define (j,)neN as
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for any n € N. Let us also define the function fy g . on R as follows,

00 Jntl - —n a1 (1—a)y—j
inf(27n® 2Jn1=e)p =7y .
Jope(x)= Z Z - sin(2/ mx). (31)

3
n=0 j=j,+1 J

We first give an estimation of the wavelet coefficients (c; ) of fu g.e.

Proposition 13 Assume that the multiresolution analysis is the Meyer multiresolu-

tion analysis. Then forn > 1,any j € {ju, ..., jus1 — 1} and any C > 0,
sup [cj x| < Cinf(2~/n®, 2dn+1(1=0)p =]y (32)
kel

for n sufficiently large.

Proof Letn e Nand £ € {j,, ..., juy1 — 1}. By definition of the wavelet coefficients
of a bounded function, we have

cox=2" /d fupe ()Y (2% — k) dx.
R
Since the trigonometric series fy g ¢ is uniformly converging on any compact,

©  Jntl inf(2=/ne 2Jn+1(1=0)=J)

=2y Y

s1n(2/nx)1/f(2fx —k)dx,

ie
n=0 j=jn+1 J
or
0t inf(2=Jne | 2Jn+1(1=0)p—J)
k=5 Z > i
n=0 j=j,+1
X / (eizfﬂx _e—iZJﬂX)w(zfx _k)dx,
R4
that is,

00 Jn+l inf(2_j”a,2j"+1(1_a)2_'/)

ci=d 3

n=0 j=j,+1 jg
ek 20~y — =12 (2t
~ . (33)

Since the Meyer wavelet belongs to the Schwartz class, its Fourier transform is sym-
metric and compactly supported with

e
supp() € | == =3 373 |

the sum in equality (33) contains at most five terms corresponding to

k € {€ —log,(k), £ —log, (k) + 1,€ —log, (k) + 2, £ —log, (k) + 3,
£ —log, (k) 4 4}.
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One directly checks that for any n € N, j € {jn, ..., ju+1 — 1}, this implies inequal-
ity (32). O

Let us now prove the uniform irregularity properties of the functions fy g ..
Proposition 14 For any 8 > 1 and any (a, ¢) € (0, 1)2, Ja.pe € Ul‘i‘_‘€ R).

Proof Let us remark that it is sufficient to prove that for any £ € N,

fupe@ =270 (34)
LetnoeNand € € {jny+1, - ., jng+1}. By definition, we have
no—1  Jjnt1
inf(2=/n® 2Jn+11—c)n—j )
fupe@8 = Z Z ( — ) sin(2/2 %)
n=0 j=ja+1 J
-1 . _i i l—a)r—j
nf(2 4/n0‘172]n0+1( @)= )
+ Y ! ( = sin@/m27Y).
J=ng 1

The classical inequality sin(x) > (2/m)x valid for any x € [0, /2] leads to the fol-
lowing inequality if j,, + 1 <€ < juo+1,

—1 . . R )

- 1nf(2_/"°" 2Jn+1 (1—a)2_/) -

fep e 2 Z — 2i—t
j:jn0+l J

> 2.2 tinf(2 im0t gl gl=eping+1(1-0)y
> 2inf(e! =62 no® | g1=e—Eping 11y,
Let 1 € (1, B) such that £ =z, that is jn, = £/t. We get

Fupe(@h = 2inf(e1 o2~ glmep—t1=F+50))
Since
sup max(e/t,1 — B/t +afl/t) <a,
t€[1,8]
inequality (34) is satisfied for any £ € N. O

Propositions 13 and 14 together imply the following proposition.

Proposition 15 For any (a, ¢, B) € (0, 1) x (1, +00), the functions Ja.p.¢ defined
by the relation (31) are uniformly Holderian, satisfy (8) and belong to UI{__(R).
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