[en] Reasons for performing the study: In human exercise physiology, the current gold standard for evaluating aerobic capacity is the measurement of oxygen consumption (VO2max) and maximal oxygen uptake (VO2max). The evaluation of VO2, in horses is performed in some laboratories equipped with a treadmill but has only been exceptionally reported in field conditions because of the lack of adapted equipment. Objectives: The aim of this study was (1) to assess the feasibility of VO2 measurement on the track using a recently validated portable breath-by-breath gas analyser system adapted to horses (Cosmed K4b® and Equimask®), (2) to compare these results with those obtained during a treadmill exercise test and (3) to study correlations between VO2 and physiological parameters usually measured in field condition such as heart rate (HR), lactataemia (LA) and the speed at which HR equals 200 beats per minute (bpm) (V200) or LA 4 mmol-1 (VLA4). Methods: Five healthy Standardbred trotters in training were submitted to two stepwise incremental exercise tests, one driven on the racetrack and the other on a high-speed treadmill with a 4% incline. Speed (v), HR, ventilatory parameters and VO2 were continu¬ously recorded throughout the duration of the tests and LA was evaluated after each step. Results: All horses com¬pleted the test satisfactorily after an initial acclimatization to the mask. There were marked individual differences in ventilatory strategy, and breathing frequency (Rf) at the higher levels of exercise was noticeably low. The VCO2 measurements were incoherent. There were no significant differences between track and treadmill maximal data obtained during the last stop [VO2peak (track: 139.9 ± 8.9 ml kg-1min-1; treadmill: 139.9 ± 13.4 ml kg-1min-1), LAmax (track: 6.5 ± 1.6mmol-1; treadmill: 7.3 ± 3.Ommol-1-1), HRma (track: 229 ± 6.2 bpm; treadmill:222 ± 13 bpm)], although the maximal speed required to reach similar workloads was significantly higher on the track (11.9 ± 0.6 ms-1 vs. 9.7 ± 0.4 ms-1). The correlation between VO, and HR (r= 0.87; P < 0.001) and VO2 and LA (r = 0.75; P < 0,001) during both tests was good but no correlation was found between VO2peak and HRmax, LAmax, V200 or VLA4. Conclusions: This is the first report of a practical portable system to measure VO2 and ventilation continuously during high-speed field exercise tests. However, current mask design markedly influences ventilation and could have prohibited the attainment of VO2max Furthermore, consistent VCO2 measurements should be implemented by the manufacturers. Potential relevance: Continuous breath-by-breath ventilation and VO2 measurements can be recorded in horses in the field at submaximal levels. With necessary adaptations to the system entailed, this study opens new perspectives in the analysis of physiological and metabolic mechanisms of exercise in the equine species in genuine track conditions.
Votion, Dominique ; Université de Liège - ULiège > Département clinique des animaux de compagnie et des équidés > Anesthésiologie gén. et pathologie chirurg. des grds animaux
Serteyn, Didier ; Université de Liège - ULiège > Département clinique des animaux de compagnie et des équidés > Anesthésiologie gén. et pathologie chirurg. des grds animaux
Art, Tatiana ; Université de Liège - ULiège > Département de sciences fonctionnelles > Phys. neuro-muscul., de l'effort - Méd. sport. des animaux
Language :
English
Title :
Evaluation of oxygen consumption during field exercise tests in Standardbred trotters
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.