[en] Being members of complex communities, plants often emit a wide range of volatile organic compounds to defend themselves against insect invasions. Although many studies exist on insect-induced plant volatile emission, most of them either compare the influences of various herbivore species on one plant species or the impact of a given herbivore on several host plant species. Moreover, informations related to the influence of insect density as well as the infestation duration are still needed. Here, we showed that a sucking insect – Myzus persicae (green peach aphid) induced the volatile emission from Arabidopsis thaliana Columbia wild-type (A.thaliana Col-0) under laboratory conditions based on results obtained by solid-phase micro-extraction coupled with gas chromatography - mass spectrometry (SPME-GC/MS). The released volatile blend was discussed in relation to related biosynthesis pathways and functions. These included terpenoids, green leaf volatiles, alcohols and isothiocyanate. The qualitative and overall proportion of volatile components differed depended on the number and residence duration of aphids on leaves. By studying the effects of sucking insect stresses to plant, we not only aim to contribute to the fundamental understanding of the emission of volatile components in the interaction between plants and pests, but also to provide standardised and easy to use assays to assess A.thaliana volatile changes according to cross stresses, including both biotic and abiotic ones in ongoing experiments.
Research Center/Unit :
Analytical Chemistry, Functional & Evolutionary Entomology, and Plant Biology