[en] Toll-like receptors (TLRs) as well as the receptors for tumor necrosis factor (TNF-R) and interleukin-1 (IL-1R) play an important role in innate immunity by regulating the activity of distinct transcription factors such as nuclear factor-kappaB (NF-kappaB). TLR, IL-1R and TNF-R signaling to NF-kappaB converge on a common IkappaB kinase complex that phosphorylates the NF-kappaB inhibitory protein IkappaBalpha. However, upstream signaling components are in large part receptor-specific. Nevertheless, the principles of signaling are similar, involving the recruitment of specific adaptor proteins and the activation of kinase cascades in which protein-protein interactions are controlled by poly-ubiquitination. In this review, we will discuss our current knowledge of NF-kappaB signaling in response to TLR-4, TNF-R and IL-1R stimulation, with a special focus on the similarities and dissimilarities among these pathways.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Gilmore, T. D. (2006) Introduction to NF-κB: players, pathways, perspectives. Oncogene 25, 6680-6684.
Hoffman, A., Natoli, G. and Ghosh, G. (2006) Transcriptional regulation via the NF-κB signaling module. Oncogene 25, 6706-6716.
Rothwarf, D. M., Zandi, E., Natoli, G. and Karin, M. (1998) IKKγ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297-300.
May, M. J., D'Acquisto, F., Madge, L. A., Glöckner, J., Pober, J. S. and Ghosh, S. (2000) Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289, 1550-1554.
Agou, F., Ye, F., Gogginont, S., Courtois, G., Yamaoka, S., Israël, A. and Véron, M. (2002) NEMO trimerizes through its coiled-coil C-terminal domain. J. Biol. Chem. 277, 17464-17475.
Tegethoff, S., Behlke, J. and Scheidereit, C. (2003) Tetrameric oligomerization of IκB kinase γ (IKKγ) is obligatory for IKK complex activity and NF-κB activation. Mol. Cell. Biol. 23, 2029-2041.
Sebban, H., Yamaoka, S. and Courtois, G. (2006) Postranslational modifications of NEMO and its partners in NF-γB signaling. Trends Cell Biol. 16, 569-577.
Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. and Ashwell, J. D. (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nat. Cell. Biol. 8, 398-406.
Brockman, J. A., Scherer, D. C., McKinsey, T. A., Hall, S. M., Qi, X., Lee, W. Y. and Ballard, D. W. (1995) Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15, 2809-2818.
Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. and Siebenlist, U. (1995) Control of IκB-alpha proteolysis by site-specific, signal-induced phophorylation. Science 267, 1485-1488.
Chen, Z. J. (2005) Ubiquitin signaling in the NF-κB pathway. Nat. Cell Biol. 7, 758-765.
Ducut, S. J. L., Bottero, V., Young, D. B., Shevenko, A., Mercurio, F. and Verma, I. M. (2004) Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science 304, 1963-1967.
Dunne, A. and O'Neill, L. A. (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Science STKE 2003:171, re3.
Haziot, A., Ferrero, E., Kontgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C. L. and Goyert, S. M. (1996) Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4, 407-414.
Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M. and Miyake, K. (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3, 667-672.
Greenfeder, S. A., Nunes, P., Kwee, L., Labow, M., Chizzonite, R. A. and Ju, G. (1995) Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270, 13757-13765.
Huang, J., Goa, X., Li, S. and Cao, Z. (1997) Recruitment of IRAK to the interleukin 1 receptor complex requires interleukin 1 receptor accessory protein. Proc. Natl. Acad. Sci. USA 94, 12829-12832.
Wesche, H., Henzel, W. J., Sillinglaw, W., Li, S. and Cao, Z. (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837-847.
Burns, K., Clatworthy, J., Martin, L., Martinon, F., Plumpton, C., Maschera, B., Lewis, A., Ray, K., Tschopp, J. and Volpe, F. (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell Biol. 2, 346-351.
Zhang, G. and Ghosh, S. (2002) Negative regulation of Toll-like receptor-mediated signaling by Tollip. J. Biol. Chem. 277, 7059-7065.
Cao, Z., Henzel, W. J. and Gao, X. (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128-1131.
Lamothe, B., Besse, A., Campos, A. D., Webster, W. K., Wu, H. and Darnay, B. G. (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J. Biol. Chem. 282, 4102-4112.
Kollewe, C., Mackensen, A. C., Neumann, D., Knop, J., Cao, P., Li, S., Wesche, H. and Martin, M.U. (2004) Sequential autophosphorylation steps in the interkeukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J. Biol. Chem. 279, 5227-5236.
Ye, H., Arron, J. R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N. K., Segal, D., Dzivenu, O. K., Vologodskaia, M., Yim, M. et al. (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447.
Qin, J., Jiang, Z., Qian, Y., Casanova, J. L. and Li, X. (2004) IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J. Biol. Chem. 279, 26748-26753.
Lye, E., Mirtsos, C., Suzuki, N., Suzuki, S. and Yeh, W. C. (2004) The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J. Biol. Chem. 279, 40653-40658.
Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K. and Li, X. (2002) Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1and TAB2 at the plasmamembrane and activate TAK1 in the cytosol. Mol. Cell. Biol. 22, 7158-1767.
Cheng, H., Addona, T., Keshishian, H., Dahlstrand, E., Lu, C., Dorsch, M., Li, Z., Wang, A., Ocain, T. D., Li, P. et al. (2006) Regulation of IRAK-4 kinase activity via autophosphorylation within its activation loop. Biochem. Biophys. Res. Commun. 352, 609-616.
Li, X., Commane, M., Burns, C., Vithalani, K., Cao, Z. and Stark, G. R. (1999) Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol. Cell. Biol. 19, 4643-4652.
Yamin, T. T. and Miller, D. K. (1997) The interleukin-1 receptor-associated kinase is degraded by proteasomes following its phosphorylation. J. Biol. Chem. 272, 21540-21547.
Qian, Y., Commane, M., Ninomiya-Tsuji, J., Matsumoto, K. and Li, X. (2001) IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1- induced activation of NF-κB. J. Biol. Chem. 276, 41661-41667.
Windheim, M., Stafford, M., Peggie, M. and Cohen, P. (2008) IL-1 induces the Lys63-linked polyubiquitination of IRAK1 to facilitate NEMO binding and the activation of IKK. Mol. Cell. Biol. Doi:10.1128/MCB.02380-06.
Ordureau, A., Smith, H., Windheim, M., Peggie, M., Carrick, E., Morrice, N. and Cohen, P. (2008) The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem., J. 409, 43-52.
Schauvliege, R., Janssens, S. and Beyaert, R. (2006) Pellino proteins are more than scaffold proteins in TLR/IL1-R signalling: a role as novel RING E3-ubiquitin-ligases. FEBS Lett. 580, 4691-4702.
Butler, M. P., Hanly, J. A. and Moynagh, P. N. (2007) Kinase-active interleukin-1 receptor-associated kinases promote polyubiquitination and degradation of the pellino family. J. Biol. Chem. 282, 29729-29737.
Schauvliege, R., Janssens, S. and Beyaert, R. (2007) Pellino proteins: novel players in TLR and IL-1R signalling. J. Cell. Mol. Med. 11, 453-461.
Strelow, A., Kollewe, C. and Wesche, H. (2003) Characterization of Pellino-2, a substrate of IRAK1 and IRAK4. FEBS Lett. 547, 157-161.
Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C. and Chen, Z. J. (2000) Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361.
Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J. and Chen, Z. J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351.
Wooff, J., Pastushok, L., Hanna, M., Fu, Y. and Xiao, W. (2004) The TRAF6 RING finger domain mediates physical interaction with Ubc13. FEBS Lett. 566, 229-233.
Lomaga, M. A., Yeh, W. C., Sarosi, I., Duncan, G. S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S. et al. (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015-1024.
Naito, A., Azuma, S., Tanaka, S., Miyazaki, T., Takaki, S., Takatsu, K., Nakao, K., Nakamura, K., Katsuki, M., Yamamoto, T. et al. (1999) Severe osteopetrosis, defective interleukin-1 singalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353-362.
Fukushima, T., Matsuzawa, S. I., Kress, C. L., Bruey, J. M., Krajewska, M., Lefebvre, S., Zapata, J. M., Ronai, Z. and Reed, J. C. (2007) Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses. Proc. Natl. Acad. Sci. USA 104, 6371-6376.
Yamamoto, M., Okamoto, T., Takeda, K., Sato, S., Sanjo, H., Uematsu, S., Saitoh, T., Yamamoto, N., Sakurai, H., Ishii, K. J. et al. (2006) Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat. Immunol. 7, 962-970.
Geetha, T., Kenchappa, R. S., Wooten, M. W. and Carter, B. D. (2005) TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor. EMBO, J. 24, 3859-3868.
Andersen, P. L., Zhou, H., Pastushok, L., Moraes, T., McKenna, S., Ziola, B., Ellison, M. J., Dixit, V. M. and Xiao, W. (2005) Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J. Cell Biol. 170, 745-755.
Sun, L., Deng, L., Ea, C. K., Xia, Z. P. and Chen, Z. J. (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289-301.
Ishitani, T., Takaesu, G., Ninomiya-Tsuji, J., Shibuya, H., Gaynor, R. B. and Matsumoto, K. (2003) Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBOJ. 22, 6277-6288.
Kanayama, A., Seth, R. B., Sun, L., Ea, C. K., Hong, M., Shaito, A., Chiu, Y. H., Deng, L. and Chen, Z. J. (2004) TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535-548.
Ea, C. K., Sun, L., Inoue, J. I. and Chen, Z. J. (2004) TIFA activates IκB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc. Natl. Acad. Sci. USA 101, 15318-15323.
Takatsuna, H., Kato, H., Gohda, J., Akiyama, T., Moriya, A., Okamoto, Y., Yamagata, Y., Otsuka, M., Umezawa, K., Semba, K. et al. (2003) Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling. J. Biol. Chem. 278, 12144-12150.
Kanamori, M., Suzuki, H., Saito, R., Muramatsu, M. and Hayashizaki, Y. (2002) T2BP, a novel TRAF2 binding protein, can activate NF-κB and AP-1 without TNF stimulation. Biochem. Biophys. Res. Commun. 290, 1108-1113.
Cheung, P. C. F., Nebreda, A. R. and Cohen, P. (2004) TAB3, a new binding partner of the protein kinase TAK1. Biochem. J. 378, 27-34.
Shim, J. H., Xiao, C., Paschal, A. E., Bailey, S. T., Rao, P., Hayden, M. S., Lee, K. Y., Bussey, C., Steckel, M., Tanaka, N. et al. (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668-2681.
Bertelsen, M. and Sanfridson, A. (2007) TAB1 modulates IL-1α mediated cytokine secretion but is dispensable for TAK1 activation. Cell. Signal. 19, 646-657.
Mendoza, H., Campbell, D. G., Burness, K., Hastie, J., Ronkina, N., Shim, J. H., Arthur, J. S. C., Davis, R. J., Gaestel, M., Johnson, G. L. et al. (2008) Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochem. J. 409, 711-722.
Kishida, S., Sanjo, H., Akira, S., Matsumoto, K. and Ninomiya-Tsuji, J. (2005) TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. Genes Cells 10, 447-454.
Takaesu, G., Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, H., Irie, K., Ninomiya-Tsuji, J. and Matsumoto, K. (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649-658.
Sanjo, H., Takeda, K., Tsujimura, T., Ninomiya-Tsuji, J., Matsumoto, K. and Akira, S. TAB2 is esssential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol. Cell. Biol. 23, 1231-1238.
Shibuya, H., Yamaguchi, K., Shirakabe, K., Tonegawa, A., Gotoh, Y., Ueno, N., Irie, K., Nishida, E. and Matsumoto, K. (1996) TAB1: an activator of the TAK1 MAPKKK in TGFβ signal transduction. Science 272, 1179-1182.
Takaesu, G., Surabhi, R. M., Park, K. J., Ninomiya-Tsuji, J., Matsumoto, K. and Gaynor, R. B. (2003) TAK1 is critical for IκB kinase-mediated activation of the NF-κB pathway. J. Mol. Biol. 326, 105-115.
Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., Matsumoto, K., Takeuchi, O., Akira, S., Ninomiya-Tsuji, J. et al. (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087-1095.
Yao, J., Kim, T.W., Qin, J., Jiang, Z., Qian, Y., Xiao, H., Lu, Y., Qian, W., Gulen, M. F. et al. (2007) Interleukin-1 (IL1)-induced TAK1-dependent versus MEKK3-dependent NFκB activation pathways bifurcate at IL-1 receptor-associated kinase modification. J. Biol. Chem. 282, 6075-6089.
Solt, L. A., Madge, L. A., Orange, J. S. and May, M. J. (2007) Interleukin-1-induced NF-κB activation is NEMO-dependent but does not require IKKβ. J. Biol. Chem. 282, 8724-8733.
Sanz, L., Diaz-Meco, M. T., Nakano, H. and Moscat, J. The atypical PKC-interacting protein p62 channels NF-κB activation by the IL-1-TRAF6 pathway. EMBO J. 19, 1576-1586.
Vadlamudi, R. K., Joung, I., Strominger, J. L. and Shin, J. (1996) p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J. Biol. Chem. 271, 20235-20237.
Kopp, E., Medzhitov, R., Carothers, J., Xiao, C., Douglas, I., Janeway, C. A. and Ghosh, S. (1999) ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13, 2059-2071.
Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T. et al. (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324-328.
Horng, T., Barton, G. M., Flavell, R. A. and Medzhitov, R. (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329-333.
Kagan, J. C. and Medzhitov, R. (2006) Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943-955.
Ulrichts, P., Peelman, F., Beyaert, R. and Tavernier, J. (2007) Mappit analysis of TLR adaptor complexes. FEBS Lett. 581, 629-636.
Gray, P., Dunne, A., Brikos, C., Jefferies, C. A., Doyle, S. L. and O'Neill, L. A. (2006) MyD88 adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction. J. Biol. Chem. 281, 10489-10495.
Kawai, T., Adachi, O., Ogawa, T., Takeda, K. and Akira, S. (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-122.
Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Mühlradt, P. F., Sato, S., Hoshino, K. and Akira, S. (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887-5894.
Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S. and Medzhitov, R. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361-368.
Kawai, T. and Akira, S. (2006) TLR signaling. Cell Death Differ. 13, 816-825.
Gohda, J., Matsumura, T. and Inoue, J. I. (2004) TNFRassociated factor (TRAF) 6 is essential for MyD88-dependent pathway but not Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173, 2913-2917.
Dong, W., Liu, Y., Peng, J., Chen, L., Zou, T., Xiao, H., Liu, Z., Li, W., Bu, Y. and Qi, Y. (2006) The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-κB from Toll-like receptor 4. J. Biol. Chem. 281, 26029-26040.
Miggin, S. M., Pålsson-McDermott, E., Dunne, A., Jefferies, C., Pinteaux, E., Banahan, K., Murphy, C., Moynagh, P., Yamamoto, M., Akira, S. et al. (2007) NF-κB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc.Natl. Acad. Sci. USA 104, 3372-3377.
Lakshmanan, U. and Porter, A. G. (2007) Caspase-4 interacts with TNF receptor-associated factor 6 and mediates lipopolysaccharide-induced NF-κB-dependent production of IL-8 and CC chemokine ligand 4 (macrophage-inflammatory protein-1b). J. Immunol. 179, 8480-8490.
Aggarwal, B. B. (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745-756.
Micheau, O. and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190.
Harper, N., Hughes, M., MacFarlane, M. and Cohen, G. M. (2003) Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem. 278, 25534-25541.
Schneider-Brachert, W., Tchikov, V., Neumeyer, J., Jakob, M., Winoto-Morbach, S., Held-Feindt, J., Heinrich, M., Merkel, O., Ehrenschwender, M., Adam, D. et al. (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415-428.
Hsu, H., Shu, H. B., Pan, M. G. and Goeddel, D.V. (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308.
Hsu, H., Huang, J., Shu, H. B., Baichwal, V. and Goeddel, D.V. (1996) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387-396.
Tada, K., Okazaki, T., Sakon, S., Kobarai, T., Kurosawa, K., Yamaoka, S., Hashimoto, H., Mak, T.W., Yagita, H., Okumura, K. et al. (2001) Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J. Biol. Chem. 276, 36530-36534.
Yeh, W. C., Shahinian, A., Speiser, D., Kraunus, J., Billia, F., Wakeham, A., de la Pompa, J. L., Ferrick, D., Hum, B., Iscove, N. et al. (1997) Early lethality, functional NF-κB activation and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715-725.
Habelhah, H., Takahashi, S., Cho, S. G., Kadoya, T., Watanabe, T. and Ronai, Z. (2004) Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. EMBO J. 23, 322-332.
Shi, C. S. and Kehrl, J. H. (2003) Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1Q/TNF receptor-associated factor 2 (TRAF2). J. Biol. Chem. 278, 15429-15434.
Dadgostar, H. and Cheng, G. (1998) An intact zinc ring finger is required for tumor necrosis factor receptor-associated factor-mediated nuclear factor-κB activation but is dispensable for c-Jun N-terminal kinase signaling. J. Biol. Chem. 273, 24775- 24780.
Devin, A., Cook, A., Lin, Y., Rodriguez, Y., Kelliher, M. and Liu, Z. (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1while RIP mediates IKK activation. Immunity 12, 419-429.
Lee, T. H., Shank, J., Cusson, N. and Kelliher, M. A. (2004) The kinase activity of RIP1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185-33191.
Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J. and Bron, C. (2003) Recruitment of TNFreceptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18, 655-664.
Kelliher, M. A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B.Z. and Leder, P. (1998) The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297-303.
Blonska, M., Shambharkar, P. B., Kobayashi, M., Zhang, D., Sakurai, H., Su, B. and Lin, X. (2005) TAK1 is recruited to the tumor necrosis factor-α (TNF-α) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-κB activation. J. Biol. Chem. 280, 43056-43063.
Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. and Chen, Z. J. (2006) Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245-257.
Li, H., Kobayashi, M., Blonska, M., You, Y. and Lin, X. (2006) Ubiquitination of RIP is required for tumor necrosis factor α-induced NF-κB activation. J. Biol. Chem. 281, 13636-13643.
Zhang, S. Q., Kovalenko, A., Cantarella, G. and Wallach, D. (2000) Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301-311.
Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D. L. et al. (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signaling. Nature 430, 694-699.
Yang, J., Lin, Y., Guo, Z., Cheng, J., Huang, J., Deng, L., Liao, W., Chen, Z., Liu, Z. and Su, B. (2001) The essential role of MEKK3 in TNF-induced NF-κB activation. Nat. Immunol. 2, 620-624.
Blonska, M., You, Y., Geleziunas, R. and Lin, X. (2004) Restoration of NF-κB activation by tumor necrosis factor alpha receptor complex-targeted MEKK3 in receptor-interacting protein-deficient cells. Mol. Cell. Biol. 24, 10757-10765.
Di, Y., Li, S., Wang, L., Zhang, Y. and Dorf, M. E. (2008) Homeostatic interactions beween MEKK3 and TAK1 involved in NF-κB signaling. Cell. Signal. 20, 705-713.
Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T. and Moscat, J. (1999) The interaction of p62 with RIP links the atypical PKCs to NF-κB activation. EMBO J. 18, 3044-3053.
Meylan, E., Martinon, F., Thome, M., Gschwendt, M. and Tschopp, J. (2002) RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NF-κB and is processed during apoptosis. EMBO Rep. 3, 1201-1208.
Festjens, N., Vandenberghe, T., Cornelis, S. and Vandenabeele, P. (2007) RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ. 14, 400-410.
Heyninck, K. and Beyaert, R. (2005) A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 30, 1-4.
Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R. and Tschopp, J. (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced short form of MyD88 is due to its failure to recruit IRAK4. J. Exp. Med. 197, 263-268.
Janssens, S., Burns, K., Tschopp, J. and Beyaert, R. (2002) Regulation of interleukin-1- and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr. Biol. 12, 467-471.
Iha, H., Peloponese, J. M., Verstrepen, L., Zapart, G., Ikeda, F., Smith, C. D., Starost, M. F., Yedavalli, V., Heyninck, K., Dikic, I. et al. (2008) Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629-641.
Shembade, N., Harhaj, N. S., Liebl, D. J. and Harhaj, E.W. (2007) Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J. 26, 3910-3922.
Kuek, A., Hazleman, B. L. and Ostör, A. J. (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad. Med. J. 83, 251-260.
Romagne, F. (2007) Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov. Today 12, 80-87.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.