Apel AK, Sola-Landa A et al (2007) Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coeli-color reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153(Pt 10):3527-3537
Bertram R, Rigali S et al (2011) Regulon of the N-acetylglu-cosamine utilization regulator NagR in Bacillus subtilis J Bacteriol 193(14):3525-3536
Chouayekh H, Virolle MJ (2002) The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol Microbiol 43(4):919-930
Claessen D, de Jong W et al (2006) Regulation of Streptomyces development: reach for the sky! Trends Microbiol 14(7):313-319
Claverys JP, Havarstein LS (2007) Cannibalism and fratricide: mechanisms and raisons d'etre. Nat Rev Microbiol 5(3):219-229
Corbari L, Durand L et al (2012) New digestive symbiosis in the hydrothermal vent amphipoda Ventiella sulfuris. C R Biol 335(2):142-154
Craig M, Lambert S et al (2012) Unsuspected control of sider-ophore production by N-acetylglucosamine in Streptomy-cetes. Environ Microbiol Rep. doi:10.1111/j1758222920 1200354x
Darbon E, Martel C, et al. (2012) Transcriptional and preliminary functional analysis of the six genes located in divergence of phoR/phoP in Streptomyces lividans. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-3995-2
Diaz M, Esteban A et al (2005) The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151(Pt 8):2583-2592
Esteban A, Diaz M et al (2008) Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol 8:201
Ghorbel S, Kormanec J et al (2006) Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 188(2):677-686
Gonzalez-Pastor JE (2011) Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35(3):415-424
Götz A, Göbel W (2010) Glucose and glucose 6-phosphate as carbon sources in extra-and intracellular growth of en-teroinvasive Escherichia coli and Salmonella enterica. Microbiology 156(Pt 4):1176-1187
Granozzi C, Billetta R et al (1990) A breakdown in macromo-lecular synthesis preceding differentiation in Streptomyces coelicolor A3(2). J Gen Microbiol 136 (4):713-716
Hopwood D (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New York
Kieser T, Bibb MJ et al (2000) Practical streptomyces genetics. John Innes Foundation, Norwich
Li M, Kim TJ et al (2008) Effects of extracellular ATP on the physiology of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 286 (1):24-31
Luti KJ, Mavituna F (2011) Elicitation of Streptomyces coeli-color with dead cells of Bacillus subtilis and Staphylo-coccus aureus in a bioreactor increases production of undecylprodigiosin. Appl Microbiol Biotechnol 90(2):461-466
Manteca A, Fernandez M et al (2005) Mycelium development in Streptomyces antibioticus ATCC11891 occurs in an orderly pattern which determines multiphase growth curves. BMC Microbiol 5:51
Manteca A, Fernandez M et al (2006) Cytological and biochemical evidence for an early cell dismantling event in surface cultures of Streptomyces antibioticus. Res Micro-biol 157(2):143-152
Manteca A, Ye J et al (2011) Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. J Proteome Res 10(12):5481-5492
Mendez C, Brana AF et al (1985) Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 31(5):446-450
Miguelez EM, Hardisson C et al (1999) Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J Cell Biol 145(3):515-525
Nothaft H, Rigali S et al (2010) The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol 75(5):1133-1144
Puglia AM, Vohradsky J et al (1995) Developmental control of the heat-shock stress regulon in Streptomyces coelicolor. Mol Microbiol 17(4):737-746
Rigali S, Nothaft H et al (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosa-mine metabolism to the control of development. Mol Microbiol 61(5):1237-1251
Rigali S, Titgemeyer F et al (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670-675
Santos-Beneit F, Rodriguez-Garcia A et al (2008) Phosphate-dependent regulation of the low-and high-affinity transport systems in the model actinomycete Streptomyces coeli-color. Microbiology 154(Pt 8):2356-2370
Sola-Landa A, Moura RS et al (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces livi-dans. Proc Natl Acad Sci USA 100(10):6133-6138
Sola-Landa A, Rodriguez-Garcia A et al (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56(5):1373-1385
Swiatek MA, Tenconi E et al (2012) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194(5):1136-1144
Viollier PH, Minas W et al (2001a) Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J Bacteriol 183(10):3184-3192
Viollier PH, Nguyen KT et al (2001b) Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor. J Bacteriol 183(10):3193-3203
Willey JM, Gaskell AA (2011) Morphogenetic signaling molecules of the streptomycetes. Chem Rev 111(1):174-187