Poster (Scientific congresses and symposiums)
Classification Trees based on infrared spectroscopic data to discriminate between genuine and counterfeit medicines.
Deconinck, Eric; Sacre, Pierre-Yves; Coomans, Danny et al.
2012Chemometrics in Analytical Chemistry (CAC 2012)
 

Files


Full Text
abstract poster cac2012.docx
Author preprint (13.5 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Due to the extension of the internet, counterfeit drugs represent a growing threat for public health in the developing countries but also more and more in the industrial world. In literature several analytical techniques were applied in order to discriminate between genuine and counterfeit medecines. One thing all these techniques have in common is that they generate a huge amount of data, which is often difficult to interpret in order to see differences between the different samples and to determine the cause of the differences. The majority of the authors make use of explorative chemometric tools to visualise the differences in the data obtained for the different samples. Even if some of the applied methods could be able to give a model with predictive ability, only a few authors created a model able to predict if a sample is counterfeit or not. Classification trees built with the Classification And Regression Tree algorithm were evaluated for modelling infrared spectroscopic data in order to discriminate between genuine and counterfeit drug samples and to classify counterfeit samples in different classes following the RIVM classification system. Models were built for two data sets consisting of the Fourrier Transformed Infrared spectra, the Near Infrared spectra and the Raman spectra for genuine and counterfeit samples of respectively Viagra® and Cialis®. Easy interpretable models were obtained for both models. The models were validated for their descriptive and predictive properties. The predictive properties were evaluated using both cross validation as an external validation set. The obtained models for both data sets showed a 100% correct classification for the discrimination between genuine and counterfeit samples and 83.3% and 100% correct classification for the counterfeit samples for the Viagra® and the Cialis® data set respectively.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Deconinck, Eric
Sacre, Pierre-Yves  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Coomans, Danny
De Beer, Jacques
Language :
English
Title :
Classification Trees based on infrared spectroscopic data to discriminate between genuine and counterfeit medicines.
Publication date :
2012
Event name :
Chemometrics in Analytical Chemistry (CAC 2012)
Event place :
Budapest, Hungary
Event date :
du 25 juin 2012 au 29 juin 2012
Audience :
International
Available on ORBi :
since 02 July 2012

Statistics


Number of views
89 (1 by ULiège)
Number of downloads
23 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi