[en] In this paper, we compare five tree-based machine learning methods within a recent generic image classification framework based on random extraction and classification of subwindows. We evaluate them on three publicly available object recognition datasets (COIL-100, ETH-80, and ZuBuD). Our comparison shows that this general and conceptually simple framework yields good results when combined with ensemble of decision trees, especially when using Tree Boosting or Extra-Trees. The latter is also particularly attractive in terms of computational efficiency.
Disciplines :
Computer science
Author, co-author :
Marée, Raphaël ; Université de Liège - ULiège > Department of Electrical Engineering and Computer Science > Systèmes et Modélisation
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Piater, Justus ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > INTELSIG Group
Wehenkel, Louis ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Decision Trees and Random Subwindows for Object Recognition
Publication date :
2005
Event name :
ICML workshop on Machine Learning Techniques for Processing Multimedia Content (MLMM2005)
Event place :
Bonn, Germany
Audience :
International
Main work title :
ICML workshop on Machine Learning Techniques for Processing Multimedia Content (MLMM2005)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.