[en] A novel and generic approach for image classification is presented.
The method operates directly on pixel values and does not require
feature extraction. It combines a simple local sub-window extraction
technique with induction of ensembles of extremely randomized
decision trees. We report results on four well known and publicly
available datasets corresponding to representative applications
of image classification problems: handwritten digits (MNIST),
faces (ORL), 3D objects (COIL-100), and textures (OUTEX). A
comparison with studies from the computer vision literature shows
that our method is competitive with the state of the art, an interesting
result considering its generality and conceptual simplicity.
Further experiments are carried out on the COIL-100 dataset to
evaluate the robustness of the learned models to rotation, scaling,
or occlusion of test images. These preliminary results are very
encouraging
Disciplines :
Computer science
Author, co-author :
Marée, Raphaël ; Université de Liège - ULiège > Department of Electrical Engineering and Computer Science > Systèmes et Modélisation
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Piater, Justus ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > INTELSIG Group
Wehenkel, Louis ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
A generic approach for image classification based on decision tree ensembles and local sub-windows
Publication date :
2004
Event name :
6th Asian Conference on Computer Vision
Event place :
Jeju, South Korea
Audience :
International
Main work title :
Proceedings of the 6th Asian Conference on Computer Vision
Editor :
Hong, K.-S.
Zhang, Z.
Publisher :
Asian Federation of Computer Vision Societies (AFCV)