[en] The Data Interpolating Variational Analysis (Diva) is a method designed to interpolate irregularly-spaced, noisy data onto any
desired location, in most cases on regular grids. It is the combination of a particular methodology, based on the minimisation of a
cost function, and a numerically efficient method, based on a finite-element solver. The cost function penalises the misfit between
the observations and the reconstructed field, as well as the regularity or smoothness of the field.
The intrinsic advantages of the method are its natural way to take into account topographic and dynamic constraints (coasts,
advection, . . . ) and its capacity to handle large data sets, frequently encountered in oceanography. The method provides gridded
fields in two dimensions, usually in horizontal layers. Three-dimension fields are obtained by stacking horizontal layers.
In the present work, we summarize the background of the method and describe the possible methods to compute the error field
associated to the analysis. In particular, we present new developments leading to a more consistent error estimation, by determining
numerically the real covariance function in Diva, which is never formulated explicitly, contrarily to Optimal Interpolation. The real
covariance function is obtained by two concurrent executions of Diva, the first providing the covariance for the second. With this
improvement, the error field is now perfectly consistent with the inherent background covariance in all cases.
A two-dimension application using salinity measurements in the Mediterranean Sea is presented. Applied on these measurements, Optimal Interpolation and Diva provided very similar gridded fields (correlation: 98.6%, RMS of the difference: 0.02). The
method using the real covariance produces an error field similar to the one of OI, except in the coastal areas.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Troupin, Charles ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Sirjacobs, Damien ; Université de Liège - ULiège > Département des sciences de la vie > Phylogénomique des eucaryotes
Ouberdous, Mohamed ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Brankart, Jean-Michel
Brasseur, Pierre
Rixen, Michel
Alvera Azcarate, Aïda ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Belounis, Mahdia
Capet, Arthur ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanologie
Lenartz, Fabian
Toussaint, Marie-Eve
Beckers, Jean-Marie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1964, Dover, New York. M. Abramowitz, I.A. Stegun (Eds.).
Barnes S.L. A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol. 1964, 3:396-409. http://dx.doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.
Barth A., Alvera-Azcárate A., Troupin C., Ouberdous M., Beckers J.M. A web interface for griding arbitrarily distributed in situ data based on data-interpolating variational analysis (DIVA). Adv. Geophys. 2010, 28:29-37. http://dx.doi.org/10.5194/adgeo-28-29-2010.
Bennett A. Inverse methods in physical oceanography. Cambridge Monogr. Mech. Appl. Math. 1992, ISBN 0-521-38568-7.
Berx B., Hughes S. Climatology of surface and near-bed temperature and salinity on the north-west European continental shelf for 1971-2000. Cont. Shelf Res. 2009, 29:2286-2292. http://dx.doi.org/10.1016/j.csr.2009.09.006.
Boyer, T.P., Antonov, J.I., Baranova, O.K., Garcia, H.E., Johnson, D.R., Locarnini, R.A., Mishonov, A.V., O'Brien, T.D., Seidov, D., Smolyar, I.V., Zweng, M.M., 2009. World Ocean Database 2009, Chapter 1: Introduction. Technical Report, National Oceanographic Data Center, Ocean Climate Laboratory, Washington, D.C. pp. 216.
Brankart J.M., Brasseur P. Optimal analysis of in situ data in the Western Mediterranean using statistics and cross-validation. J. Atmos. Ocean. Tech. 1996, 13:477-491. http://dx.doi.org/10.1175/1520-0426(1996)013<0477:OAOISD>2.0.CO;2.
Brankart J.M., Brasseur P. The general circulation in the Mediterranean Sea: a climatological approach. J. Mar. Syst. 1998, 18:41-70. http://dx.doi.org/10.1016/S0924-7963(98)00005-0.
Brankart J.M., Ubelmann C., Testut C.E., Cosme E., Brasseur P., Verron J. Efficient parameterization of the observation error covariance matrix for square root or ensemble Kalman filters: application to ocean altimetry. Mon. Weather Rev. 2009, 137:1908-1927. http://dx.doi.org/10.1175/2008MWR2693.1.
Brasseur, P., 1994. Reconstruction de champs d'observations océanographiques par le Modéle variationnel inverse: Méthodologie et Applications, Ph.D. Thesis, University of Liége.
Brasseur P., Beckers J.M., Brankart J.M., Schoenauen R. Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of a historical data set. Deep-Sea Res. I 1996, 43:159-192. http://dx.doi.org/10.1016/0967-0637(96)00012-X.
Brasseur P., Haus J. Application of a 3-D variational inverse model to the analysis of ecohydrodynamic data in the Northern Bering and Southern Chukchi Seas. J. Mar. Syst. 1991, 1:383-401. http://dx.doi.org/10.1016/0924-7963(91)90006-G.
Brasseur P.P. A variational inverse method for the reconstruction of general circulation fields in the northern Bering Sea. J. Geophys. Res. 1991, 96:4891-4907. http://dx.doi.org/10.1029/90JC02387.
Bretherton F., Davis R., Fandry C. A technique for objective analysis and design of oceanic experiments applied to mode-73. Deep-Sea Res. 1976, 23:559-582. http://dx.doi.org/10.1016/0011-7471(76)90001-2.
Chilés J.P., Delfiner P. Geostatistics: Modeling Spatial Uncertainty 1999, Wiley-Interscience, ISBN 0-471-08315-1. first ed.
Cleveland W.S., Devlin S.J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83:596-610. http://dx.doi.org/10.2307/2289282.
Craven P., Wahba G. Smoothing noisy data with spline functions. Numer. Math. 1979, 31:377-403. http://dx.doi.org/10.1007/BF01404567.
Delhomme J. Kriging in the hydrosciences. Adv. Water Resour. 1978, 1:251-266. http://dx.doi.org/10.1016/0309-1708(78)90039-8.
Franke R. Thin plate splines with tension. Comput. Aided Geom. D. 1985, 2:87-95. http://dx.doi.org/10.1016/0167-8396(85)90011-1.
Gandin, L.S., 1965. Objective analysis of meteorological fields, Israel Program for Scientific Translations, Jerusalem.
Gascard J., Richez C. Water masses and circulation in the Western Alboran sea and in the straits of Gibraltar. Prog. Oceanogr. 1985, 15:157-216. http://dx.doi.org/10.1016/0079-6611(85)90031-X.
Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21:215-223. http://www.jstor.org/stable/1268518.
Gomis D., Ruiz S., Pedder M. Diagnostic analysis of the 3D ageostrophic circulation from a multivariate spatial interpolation of CTD and ADCP data. Deep-Sea Res. 2001, 48:269-295. http://dx.doi.org/10.1016/S0967-0637(00)00060-1.
Hartman L., Hössjer O. Fast kriging of large data sets with Gaussian Markov random fields. Comput. Stat. Data Anal. 2008, 52:2331-2349. http://dx.doi.org/10.1016/j.csda.2007.09.018.
Kaplan A., Kushnir Y., Cane M.A. Reduced space optimal interpolation of historical marine sea level pressure: 1854-1992*. J. Clim. 2000, 13:2987-3002. http://dx.doi.org/10.1175/1520-0442(2000)013<2987:RSOIOH>2.0.CO;2.
Legler D.M., Navon I.M., O'Brien J.J. Objective analysis of pseudostress over the indian ocean using a direct-minimization approach. Mon. Weather Rev. 1989, 117:709-720. http://dx.doi.org/10.1175/1520-0493(1989)117<0709:OAOPOT>2.0.CO;2.
Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., 2006. World Ocean Atlas 2005, Volume 1: Temperature, Technical Report, US Government Printing Office, Washington, DC, p. 182.
Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M., Johnson, D.R., 2010. World Ocean Atlas 2009. Volume 1: Temperature. In: S. Levitus, (Ed.), NOAA Atlas NESDIS 68, US Government Printing Office, Washington, DC, p. 184.
Logan, D.L., 2012. A first course in the Finite element method. Global Engineering. Fifth ed. ISBN 978-0-495-66825-1.
McIntosh P.C. Oceanographic data interpolation: objective analysis and splines. J. Geophys. Res. 1990, 95:13529-13541. http://dx.doi.org/10.1029/JC095iC08p13529.
Millot C. Circulation in the Western Mediterranean sea. J. Mar. Syst. 1999, 20:423-442. http://dx.doi.org/10.1016/S0924-7963(98)00078-5.
Ridgway K.R., Dunn J.R., Wilkin J.L. Ocean interpolation by four-dimensional weighted least squares - application to the waters around Australasia. J. Atmos. Ocean. Tech. 2002, 19:1357-1375. http://dx.doi.org/10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.
Rixen M., Beckers J.M., Brankart J.M., Brasseur P. A numerically efficient data analysis method with error map generation. Ocean Model. 2000, 2:45-60. http://dx.doi.org/10.1016/S1463-5003(00)00009-3.
Rixen, M., Beckers, J.M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., Fichaut, M., Balopoulos, E., Iona, S., Dooley, H., Garcia, M.J., Manca, B., Giorgetti, A., Manzella, G., Mikhailov, N., Pinardi, N., Zavatarelli, M., the Medar Consortium, 2005a. The Western Mediterranean Deep Water: a proxy for global climate change. Geophys. Res. Lett. 32, L12608. doi:10.1029/2005GL022702.
Rixen, M., Beckers, J.M., Maillard, C., the MEDAR Group, 2005b. A hydrographic and bio-chemical climatology of the Mediterranean and the Black Sea: a technical note on the use of coastal data. B. Geofis. Teor. Appl. 46, 319-327.
Schweikert D.G. An interpolation curve using a spline in tension. J. Math. Phys. 1966, 45:312-317.
Shen S., Smith T., Ropelewski C., Livezey R. An optimal regional averaging method with error estimates and a test using tropical pacific SST data. J. Clim. 1998, 11:2340-2350. http://dx.doi.org/10.1175/1520-0442(1998)011<2340:AORAMW>2.0.CO;2.
Steele M., Morley R., Ermold W. PHC: A global ocean hydrography with a high-quality Arctic ocean. J. Clim. 2001, 14:2079-2087. http://dx.doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.
von Storch H., Zwiers F. Statistical Analysis in Climate Research 1999, Cambdridge University Press, Cambridge.
Tandeo P., Ailliot P., Autret E. Linear Gaussian state-space model with irregular sampling: application to sea surface temperature. Stoch. Env. Res. Risk. A. 2011, 25:793-804. http://dx.doi.org/10.1007/s00477-010-0442-8.
Teague W.J., Carron M.J., Hogan P.J. A comparison between the generalized digital environmental model and Levitus climatologies. J. Geophys. Res. 1990, 95:7167-7183. http://dx.doi.org/10.1029/JC095iC05p07167.
Troupin, C., Beckers, J.M., Ouberdous, M., Sirjacobs, D., 2010a. Diva User's Guide. GeoHydrodynamics and Environment Research. http://modb.oce.ulg.ac.be/projects/1/diva.
Troupin C., Machi{dotless}́n F., Ouberdous M., Sirjacobs D., Barth A., Beckers J.M. High-resolution climatology of the north-east atlantic using data-interpolating variational analysis (Diva). J. Geophys. Res. 2010, 115:C08005. http://dx.doi.org/10.1029/2009JC005512.
Tyberghein L., Verbruggen H., Klaas P., Troupin C., Mineur F., De Clerck O. ORACLE: a global environmental dataset for marine species distribution modeling. Global Ecol. Biogeogr. 2012, 21:272-281. http://dx.doi.org/10.1111/j.1466-8238.2011.00656.x.
Wahba G. Smoothing noisy data with spline functions. Numer. Math. 1975, 24:383-393. http://dx.doi.org/10.1007/BF01437407.
Wahba G., Wendelberger J. Some new mathematical methods for variational objective analysis using splines and cross validation. Mon. Weather Rev. 1980, 108:1122-1143. http://dx.doi.org/10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2.
Zhang H., Wang Y. Kriging and cross-validation for massive spatial data. Environmetrics 2010, 21:290-304. http://dx.doi.org/10.1002/env.1023.