sugar; supercritical carbon dioxide; radical polymerization; green technology
Abstract :
[en] The use of aqueous dispersed media, such as emulsions, has many advantages over solution processes for chemical transformations and polymerization reactions, i.e. limited environmental impact, ease of products recovery and increased reaction rate. Emulsions are usually implemented from a water/organic solvent mixture in the presence of a surfactant. However, supercritical carbon dioxide (scCO2) (Pc =74 bars; Tc = 31°C) constitutes an interesting alternative to the traditional organic solvents in these heterogeneous systems because it is inexpensive, non-toxic, non-inflammable and environmentally friendlier. In this context, we developed a novel class of surfactants for the stabilization of H2O/scCO2 emulsions, i.e. fluorinated modified carbohydrates. The hydrophilic head of the surfactant consists in a sugar moiety whereas a fluorinated tail is specifically located in the scCO2 phase. The strategies for the synthesis of these carbohydrates esters rely on selective lipase-catalyzed modifications of sugars and on the versatile thiol-Michael addition reaction. The ability of these molecules to decrease the H2O/scCO2 interfacial tension and to stabilize such emulsions will be presented. Finally, high internal phase scCO2-in-water emulsion (HIPE) were prepared with these new surfactants and used as template for the acrylamide polymerization. The monomer is polymerized in the continuous aqueous phase before removing the CO2 droplets (at least 70 % of the total volume). The resulting permeable porous polymers, called polyHIPEs, exhibit highly interconnected voids (cfr SEM picture) and should be valuable in many applications including support for catalyst, filtration process, immobilization of proteins, etc.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Boyère, Cédric ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Favrelle, Audrey; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Broze, Guy ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.