Abstract :
[en] Hydrogen (H2) is being considered as an ideal and clean energy carrier since the utilization of hydrogen, either via combustion or via fuel cells, results in pure water. The recent advances to produce biohydrogen from renewable sources such as biomass and particularly by fermentation of carbohydrate-rich substrates from agriculture and agro-industries appear promising. Such a process called “dark fermentation” enables both organic waste treatment and renewable energy production to be coupled. In the thesis different hydrogen-producing microorganisms were studied and some environmental parameters and bioreactors have been investigated in order to improve the hydrogen production yields and rates.
The experimental results compared the hydrogen production yield of 19 different pure strains and sludges : facultative and strict anaerobic H2-producing strains along with anaerobic digester sludges thermally pre-treated (to enrich the microflora in high H2-producers) or not. Significant yields variations were recorded even between different strains of the same species (up to 20% of variation). The pure Clostridium butyricum (C. but.) strains achieved the highest yields i.e. up to 172 L H2 produced per kilogram of glucose consumed (1.38 mol H2 / mol glucose).
Two efficient H2-producing strains (C. but. CWBI1009 and Citrobacter freundii CWBI952) were further studied in order to determine the optimum culture conditions for the production of hydrogen. A 2.3 L bioreactor was operated at 30 °C in batch and sequenced-batch mode using glucose and starch as substrates. For glucose the maximum yield (211 L H2 / kg or 1.7 mol H2 / mol glucose) was measured with the C. but. strain when the pH was maintained at 5.2. In sequenced-batch reactor a 35% increase in H2 yield was obtained with removal–addition of 40% of the culture medium at the beginning of each sequence.
For operation in continuous mode, original bioreactors such as an anaerobic biodisc reactor (AnBDR) were designed to both fix biomass and enable rapid liquid to gas transfer of hydrogen produced since H2 partial pressure and H2 supersaturation are known as hardly affecting hydrogen production performances. The highest and stable H2 production rate (703 L H2 per hour and per m³ of liquid volume inside the bioreactor) and yield (302 L / kg glucose consumed i.e. 2.4 mol/mol) with the pure culture of C. but. CWBI1009 were recorded in the AnBDR with 300 mL culture medium (total volume 2.3 L) at pH 5.2 and a glucose loading rate of 2.87 kg / m³.h. These results achieved with pure strains are relevant compared to the highest H2 yields and rates reported in the literature with mixed cultures and achieved in reactors, such as trickle bed bioreactors, with high gas transfer performances.
Moreover, the soluble metabolites, mainly acetate and butyrate, contained in the spent medium of the dark fermentation bioreactor were efficiently converted to methane in a second anaerobic digester (20 L continuously stirred tank) with a methane yield of about 170 L/kg COD initially fed in the first stage. These results demonstrate that a two-step anaerobic digestion process may be carried out in two successive bioreactors, both with specific and optimized parameters, in order to generate separated biogas flows containing either H2 or CH4. In addition to the advantages related to both gaseous molecule properties, many technological improvements would be achieved by this way : better hydrolysis, higher process stability, etc.
The general discussion highlights the central and relevant position of the 2-stage anaerobic digestion process in the panorama of technologies able to both treat raw or residual organic matter and to produce energy or energy vectors for stationary or mobile end-use. The technical, economical and environmental aspects have been considered.
[fr] L’hydrogène (H2) est considéré comme un vecteur d’énergie idéal et propre : son utilisation dans des piles à combustible ou sa combustion résulte essentiellement en un rejet d’eau. Les dernières avancées au niveau de la valorisation énergétique de la biomasse laissent entrevoir une place non négligeable pour la production de biohydrogène par fermentation de substrats riches en composés carbohydratés tels que les sous-produits d'origine agricole ou eaux résiduaires des industries agro-alimentaires. Un tel procédé appelé “dark fermentation” permet de coupler épuration d’une charge organique et production d’énergie renouvelable. Dans la thèse, différents types de microorganismes producteurs d'hydrogène ainsi que plusieurs paramètres environnementaux et bioréacteurs ont été étudiés en vue d'améliorer les productivités et rendements de production d’hydrogène.
Les expérimentations ont permis de comparer les rendements de production d’hydrogène de 19 souches pures et cultures mixtes différentes : souches pures de bactéries anaérobies facultatives ou strictes ainsi que des boues de digesteurs anaérobies, après d’éventuels traitements thermiques pour enrichir la microflore en microorganismes hyper producteurs d’H2. Des variations significatives de rendement ont été enregistrées même pour des souches de la même espèce (jusqu’à 20 % de variation). Les rendements les plus élevés, de l’ordre de 172 L H2 produits par kilogramme de glucose consommé (1.38 mol H2 / mol glucose), ont été atteints par les souches pures de Clostridium butyricum (C. but.).
Deux souches productrices d’H2 particulièrement intéressantes (C. but. CWBI1009 et Citrobacter freundii CWBI952) ont été étudiées de façon plus approfondie dans l’optique de déterminer les conditions de culture optimales pour la production d’H2. Ces travaux ont été menés en bioréacteur de 2.3L à 30°C en mode batch et séquentiel avec le glucose ou l’amidon comme substrat. Le rendement d’H2 maximum a été mesuré sur glucose (211 L H2 / kg ou 1.7 mol H2 / mol glucose) avec la souche C. but. au pH contrôlé à une valeur de 5.2. En mode séquentiel, 35% d’augmentation du rendement ont pu être obtenus en opérant un retrait/ajout de 40% du milieu de culture en début de chaque séquence.
Pour les opérations en mode continu, des bioréacteurs originaux tels qu’un réacteur à biodisque anaérobie (AnBDR) ont été mis en œuvre pour, à la fois immobiliser la biomasse et permettre un transfert rapide vers la phase gazeuse de l’hydrogène produit en phase liquide. Il s’agit ainsi de pallier l’impact de la pression partielle et de la sursaturation en H2 affectant lourdement les rendements et productivités d’H2. Les performances les plus remarquables en productivité d’H2 (703 L H2 par heure et par m³ de volume liquide au sein du bioréacteur) et rendement (302 L / kg glucose dégradé, soit 2.4 mol/mol) ont été enregistrées avec la souche pure de C. but. CWBI1009 dans l’AnBDR avec 300 mL de milieu de culture (volume total de 2.3 L) au pH de 5.2 et avec une charge organique en glucose de 2.87 kg / m³.h. Ces résultats importants obtenus avec des souches pures sont comparables aux meilleurs rendements et productivités d’H2 rapportés dans la littérature pour des cultures mixtes et concernant des réacteurs à haut pouvoir de transfert gazeux tels que les bioréacteurs à lit arrosé.
De plus, les métabolites solubles, principalement l’acétate et le butyrate, contenus dans l’effluent du bioréacteur de dark fermentation ont pu être convertis efficacement en méthane dans un second bioréacteur anaérobie (à cuve agitée de 20 L) avec un rendement en méthane de l’ordre de 170 ml/g DCO initialement introduite dans le premier bioréacteur. Ces résultats démontrent la faisabilité d’une digestion anaérobie classique en deux étages, optimisés individuellement pour produire deux types de biogaz contenant soit de l’H2 ou du CH4. En plus des avantages liés aux propriétés intrinsèques de ces deux molécules gazeuses, plusieurs améliorations du procédé peuvent être visées de cette manière : hydrolyse plus approfondie, plus grande stabilité du procédé, etc.
La discussion générale met en évidence le rôle central et important du procédé de digestion anaérobie en deux phases dans le panel des technologies capables à la fois de traiter des matières premières organiques ou résiduelles et de produire de l’énergie ou un vecteur énergétique pour des applications stationnaires ou mobiles. Les aspects techniques, économiques et environnementaux ont été pris en considération.
Disciplines :
Environmental sciences & ecology
Microbiology
Engineering, computing & technology: Multidisciplinary, general & others
Biotechnology