Aczél's bisymmetry; mediality; polynomial function; integral domain
Abstract :
[en] We describe the class of n-variable polynomial functions that satisfy Aczel’s
bisymmetry property over an arbitrary integral domain of characteristic zero with identity.
Disciplines :
Mathematics
Author, co-author :
Marichal, Jean-Luc; University of Luxembourg > Mathematics research unit > Professor
Mathonet, Pierre ; Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Language :
English
Title :
A classification of bisymmetric polynomial functions over integral domains of characteristic zero
Aczél J.: The notion of mean values. Norske Videnskabers Selskabs Forhandlinger 19, 83-86 (1946).
Aczél J.: On mean values. Bull. of the Amer. Math. Soc. 54, 392-400 (1948).
Aczél J., Dhombres J.: Functional Equations in Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 31. Cambridge University Press, Cambridge, UK (1989).
Behrisch, M., Couceiro, M., Kearnes, K. A., Lehtonen, E., Szendrei, Á.: Commuting polynomial operations of distributive lattices. Order, to appear.
Couceiro M., Lehtonen E.: Self-commuting lattice polynomial functions on chains. Aeq. Math. 81(3), 263-278 (2011).
Grabisch M., Marichal J.-L., Mesiar R., Pap E.: Aggregation Functions. Encyclopedia of Mathematics and its Applications, vol. 127. Cambridge University Press, Cambridge, UK (2009).
Ježek J., Kepka T.: Equational theories of medial groupoids. Algebra Universalis 17, 174-190 (1983).
Ježek J., Kepka T.: Medial groupoids. Rozpravy Československé Akad. Věd, Řada Mat. Přírod. Věd 93, 93 (1983).
Marichal, J.-L., Mathonet, P.: A description of n-ary semigroups polynomial-derived from integral domains. Semigroup Forum (in press).
Soublin J.-P.: Étude algébrique de la notion de moyenne. J. Math. Pure Appl. 50, 53-264 (1971).