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Abstract. We describe the class of n-variable polynomial functions that sat-
isfy Aczél’s bisymmetry property over an arbitrary integral domain of charac-

teristic zero with identity.

1. Introduction

Let R be an integral domain of characteristic zero (hence R is infinite) with iden-
tity and let n ⩾ 1 be an integer. In this paper we provide a complete description
of all the n-variable polynomial functions over R that satisfy the (Aczél) bisymme-
try property. Recall that a function f ∶Rn → R is bisymmetric if the n2-variable
mapping

(x11, . . . , x1n; . . . ;xn1, . . . , xnn)↦ f(f(x11, . . . , x1n), . . . , f(xn1, . . . , xnn))

does not change if we replace every xij by xji.
The bisymmetry property for n-variable real functions goes back to Aczél [1,

2]. It has been investigated since then in the theory of functional equations by
several authors, especially in characterizations of mean functions and some of their
extensions (see, e.g., [3, 5–7]). This property is also studied in algebra where it is
called mediality. For instance, an algebra (A,f) where f is a bisymmetric binary
operation is called a medial groupoid (see, e.g., [8, 9, 11]).

We now state our main result, which provides a description of the possible bisym-
metric polynomial functions from Rn to R. Let Frac(R) denote the fraction field
of R and let N be the set of nonnegative integers. For any n-tuple x = (x1, . . . , xn),
we set ∣x∣ = ∑ni=1 xi.

Main Theorem. A polynomial function P ∶Rn → R is bisymmetric if and only if
it is

(i) univariate, or
(ii) of degree ⩽ 1, that is, of the form

P (x) = a0 +
n

∑
i=1

ai xi ,

where ai ∈R for i = 0, . . . , n, or
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(iii) of the form

P (x) = a
n

∏
i=1

(xi + b)αi − b ,

where a ∈ R, b ∈ Frac(R), and α ∈ Nn satisfy abk ∈ R for k = 1, . . . , ∣α∣ − 1

and ab∣α∣ − b ∈R.

The following example, borrowed from [10], gives a polynomial function of class
(iii) for which b ∉R.

Example 1. The third-degree polynomial function P ∶Z3 → Z defined on the ring
Z of integers by

P (x1, x2, x3) = 9x1x2x3 + 3 (x1x2 + x2x3 + x3x1) + x1 + x2 + x3
is bisymmetric since it is the restriction to Z of the bisymmetric polynomial function
Q∶Q3 → Q defined on the field Q of rationals by

Q(x1, x2, x3) = 9
3

∏
i=1

(xi +
1

3
) − 1

3
.

Since polynomial functions usually constitute the most basic functions, the prob-
lem of describing the class of bisymmetric polynomial functions is quite natural. On
this subject it is noteworthy that a description of the class of bisymmetric lattice
polynomial functions over bounded chains and more generally over distributive lat-
tices has been recently obtained [4,5] (there bisymmetry is called self-commutation),
where a lattice polynomial function is a function representable by combinations of
variables and constants using the fundamental lattice operations ∧ and ∨.

From the Main Theorem we can derive the following test to determine whether a
non-univariate polynomial function P ∶Rn →R of degree p ⩾ 2 is bisymmetric. For
k ∈ {p − 1, p}, let Pk be the homogenous polynomial function obtained from P by
considering the terms of degree k only. Then P is bisymmetric if and only if Pp is a
monomial and Pp(x) = P (x−b1)+b, where 1 = (1, . . . ,1) and b = Pp−1(1)/(pPp(1)).

Note that the Main Theorem does not hold for an infinite integral domain R
of characteristic r > 0. As a counterexample, the bivariate polynomial function
P (x1, x2) = xr1 + xr2 is bisymmetric.

In the next section we provide the proof of the Main Theorem, assuming first
that R is a field and then an integral domain.

2. Technicalities and proof of the Main Theorem

We observe that the definition of R enables us to identify the ring R[x1, . . . , xn]
of polynomials of n indeterminates over R with the ring of polynomial functions of
n variables from Rn to R.

It is a straightforward exercise to show that the n-variable polynomial functions
given in the Main Theorem are bisymmetric. We now show that no other n-variable
polynomial function is bisymmetric. We first consider the special case when R is
a field. We then prove the Main Theorem in the general case (i.e., when R is an
integral domain of characteristic zero with identity).

Unless stated otherwise, we henceforth assume that R is a field of characteristic
zero. Let p ∈ N and let P ∶Rn → R be a polynomial function of degree p. Thus P
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can be written in the form

P (x) = ∑
∣α∣⩽p

cα xα, with xα =
n

∏
i=1

xαi

i ,

where the sum is taken over all α ∈ Nn such that ∣α∣ ⩽ p.
The following lemma, which makes use of formal derivatives of polynomial func-

tions, will be useful as we continue.

Lemma 2. For every polynomial function B∶Rn →R of degree p and every x0,y0 ∈
Rn, we have

(1) B(x0 + y0) = ∑
∣α∣⩽p

yα
0

α!
(∂αx B)(x0) ,

where ∂αx = ∂α1
x1
⋯∂αn

xn
and α! = α1!⋯αn!.

Proof. It is enough to prove the result for monomial functions since both sides of
(1) are additive on the function B. We then observe that for a monomial function
B(x) = cxβ the identity (1) reduces to the multi-binomial theorem. �

As we will see, it is useful to decompose P into its homogeneous components,
that is, P = ∑pk=0 Pk, where

Pk(x) = ∑
∣α∣=k

cα xα

is the unique homogeneous component of degree k of P . In this paper the homoge-
neous component of degree k of a polynomial function R will often be denoted by
[R]k.

Since Pp ≠ 0, the polynomial function Q = P − Pp, that is

Q(x) = ∑
∣α∣<p

cα xα,

is of degree q < p and its homogeneous component [Q]q of degree q is Pq.
We now assume that P is a bisymmetric polynomial function. This means that

the polynomial identity

(2) P(P (r1), . . . , P (rn)) − P (P (c1), . . . , P (cn)) = 0

holds for every n × n matrix

(3) X =
⎛
⎜
⎝

x11 ⋯ x1n
⋮ ⋱ ⋮
xn1 ⋯ xnn

⎞
⎟
⎠
∈Rnn ,

where ri = (xi1, . . . , xin) and cj = (x1j , . . . , xnj) denote its ith row and jth column,
respectively. Since all the polynomial functions of degree ⩽ 1 are bisymmetric, we
may (and henceforth do) assume that p ⩾ 2.

From the decomposition P = Pp +Q it follows that

P (P (r1), . . . , P (rn)) = Pp(P (r1), . . . , P (rn)) +Q(P (r1), . . . , P (rn)),
where Q(P (r1), . . . , P (rn)) is of degree p q.

To obtain necessary conditions for P to be bisymmetric, we will equate the
homogeneous components of the same degree > p q of both sides of (2). By the
previous observation this amounts to considering the equation

(4) [Pp(P (r1), . . . , P (rn)) − Pp(P (c1), . . . , P (cn))]d = 0 , for p q < d ⩽ p2.
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By applying (1) to the polynomial function Pp and the n-tuples

x0 = (Pp(r1), . . . , Pp(rn)) and y0 = (Q(r1), . . . ,Q(rn)),
we obtain

(5) Pp(P (r1), . . . , P (rn)) = ∑
∣α∣⩽p

yα
0

α!
∂αx Pp(x0)

and similarly for Pp(P (c1), . . . , P (cn)). We then observe that in the sum of (5) the
term corresponding to a fixed α is either zero or of degree

q ∣α∣ + (p − ∣α∣)p = p2 − (p − q) ∣α∣
and its homogeneous component of highest degree is obtained by ignoring the com-
ponents of degrees < q in Q, that is, by replacing y0 by (Pq(r1), . . . , Pq(rn)).

Using (4) with d = p2, which leads us to consider the terms in (5) for which
∣α∣ = 0, we obtain

(6) Pp(Pp(r1), . . . , Pp(rn)) − Pp(Pp(c1), . . . , Pp(cn)) = 0.

Thus, we have proved the following claim.

Claim 3. The polynomial function Pp is bisymmetric.

We now show that Pp is a monomial function.

Proposition 4. Let H ∶Rn → R be a bisymmetric polynomial function of degree
p ⩾ 2. If H is homogeneous, then it is a monomial function.

Proof. Consider a bisymmetric homogeneous polynomialH ∶Rn →R of degree p ⩾ 2.
There is nothing to prove if H depends on one variable only. Otherwise, assume for
the sake of a contradiction that H is the sum of at least two monomials of degree
p, that is,

H(x) = axα + bxβ + ∑
∣γ∣=p

cγ xγ ,

where a b ≠ 0 and ∣α∣ = ∣β∣ = p. Using the lexicographic order ≼ over Nn, we can
assume that α ≻ β ≻ γ. Applying the bisymmetry property of H to the n×n matrix
whose (i, j)-entry is xiyj , we obtain

H(x)pH(yp) =H(y)pH(xp),
where xp = (xp1, . . . , xpn). Regarding this equality as a polynomial identity in y and
then equating the coefficients of its monomial terms with exponent pα, we obtain

(7) H(x)p = ap−1H(xp).
Since R is of characteristic zero, there is a nonzero monomial term with exponent
(p−1)α+β in the left-hand side of (7) while there is no such term in the right-hand
side since pα ≻ (p − 1)α +β ≻ pβ (since p ⩾ 2). Hence a contradiction. �

The next claim follows immediately from Proposition 4.

Claim 5. Pp is a monomial function.

By Claim 5 we can (and henceforth do) assume that there exist c ∈R ∖ {0} and
γ ∈ Nn, with ∣γ∣ = p, such that

(8) Pp(x) = cxγ .
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A polynomial function F ∶Rn →R is said to depend on its ith variable xi (or xi
is essential in F ) if ∂xiF ≠ 0. The following claim shows that Pp determines the
essential variables of P .

Claim 6. If Pp does not depend on the variable xj, then P does not depend on xj.

Proof. Suppose that ∂xjPp = 0 and fix i ∈ {1, . . . , n}, i ≠ j, such that ∂xiPp /= 0. By
taking the derivative of both sides of (2) with respect to xij , the (i, j)-entry of the
matrix X in (3), we obtain

(9) (∂xiP )(P (r1), . . . , P (rn))(∂xjP )(ri) = (∂xjP )(P (c1), . . . , P (cn))(∂xiP )(cj).
Suppose for the sake of a contradiction that ∂xjP ≠ 0. Thus, neither side of (9)
is the zero polynomial. Let Rj be the homogeneous component of ∂xjP of highest
degree and denote its degree by r. Since Pp does not depend on xj , we must have
r < p− 1. Then the homogeneous component of highest degree of the left-hand side
in (9) is given by

(∂xiPp)(Pp(r1), . . . , Pp(rn))Rj(ri)
and is of degree p(p − 1) + r. But the right-hand side in (9) is of degree at most
rp + p − 1 = (r + 1)(p − 1) + r < p(p − 1) + r, since r < p − 1 and p ⩾ 2. Hence a
contradiction. Therefore ∂xjP = 0. �

We now give an explicit expression for Pq = [P − Pp]q in terms of Pp. We first
present an equation that is satisfied by Pq.

Claim 7. Pq satisfies the equation
(10)

n

∑
i=1

Pq(ri)(∂xiPp)(Pp(r1), . . . , Pp(rn)) =
n

∑
i=1

Pq(ci)(∂xiPp)(Pp(c1), . . . , Pp(cn))

for every matrix X as defined in (3).

Proof. By (6) and (8) we see that the left-hand side of (4) for d = p2 is zero.
Therefore, the highest degree terms in the sum of (5) are of degree p2 − (p− q) > p q
(because (p − 1)(p − q) > 0) and correspond to those α ∈ Nn for which ∣α∣ = 1.
Collecting these terms and then considering only the homogeneous component of
highest degree (that is, replacing Q by Pq), we see that the identity (4) for d =
p2 − (p − q) is precisely (10). �

Claim 8. We have

(11) Pq(x) =
Pq(1)
c p

Pp(x)
n

∑
j=1

γj

xp−qj

.

Moreover, Pq = 0 if there exists j ∈ {1, . . . , n} such that 0 < γj < p − q.

Proof. Considering Eq. (10) for a matrix X such that ri = x for i = 1, . . . , n, we
obtain

c pPq(x)Pp(x)p−1 = Pq(1)
n

∑
i=1

xqi (∂xiPp)(cx
p
1, . . . , c x

p
n).

Since ∂xiPp(x) = γi Pp(x)/xi, the previous equation becomes

(12) c pPq(x)Pp(x)p−1 = Pq(1)Pp(x)p
n

∑
i=1

γi

xp−qi
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from which Eq. (11) follows. Now suppose that Pq ≠ 0 and let j ∈ {1, . . . , n}.
Comparing the lowest degrees in xj of both sides of (12), we obtain

(p − 1)γj ⩽
⎧⎪⎪⎨⎪⎪⎩

pγj − p + q , if γj ≠ 0,

p γj , if γj = 0.

Therefore, we must have γj = 0 or γj ⩾ p− q, which ensures that the right-hand side
of (11) is a polynomial. �

If ϕ∶R → R is a bijection, we can associate with every function f ∶Rn → R its
conjugate ϕ(f)∶Rn →R defined by

ϕ(f)(x1, . . . , xn) = ϕ−1(f(ϕ(x1), . . . , ϕ(xn))).
It is clear that f is bisymmetric if and only if so is ϕ(f). We then have the following
fact.

Fact 9. The class of n-variable bisymmetric functions is stable under the action of
conjugation.

Since the Main Theorem involves polynomial functions over a ring, we will only
consider conjugations given by translations ϕb(x) = x + b.

We now show that it is always possible to conjugate P with an appropriate
translation ϕb to eliminate the terms of degree p − 1 of the resulting polynomial
function ϕb(P ).
Claim 10. There exists b ∈ R such that ϕb(P ) has no term of degree p − 1.

Proof. If q < p − 1, we take b = 0. If q = p − 1, then using (1) with y0 = b1, we get

[ϕb(P )]
p−1

= Pp−1 + b
n

∑
i=1

∂xiPp .

On the other hand, by (11) we have

Pp−1 =
Pp−1(1)
c p

n

∑
i=1

∂xi
Pp .

It is then enough to choose b = −Pp−1(1)/(c p) and the result follows. �

We can now prove the Main Theorem for polynomial functions of degree ⩽ 2.

Proposition 11. The Main Theorem is true when R is a field of characteristic
zero and P is a polynomial function of degree ⩽ 2.

Proof. Let P be a bisymmetric polynomial function of degree p ⩽ 2. If p ⩽ 1, then
P is in class (ii) of the Main Theorem. If p = 2, then by Claim 10 we see that P
is (up to conjugation) of the form P (x) = c2 xi xj + c0. If i = j, then by Claim 6
we see that P is a univariate polynomial function, which corresponds to the class
(i). If i /= j, then by Claim 8 we have c0 = 0 and hence P is a monomial (up to
conjugation). �

By Proposition 11 we can henceforth assume that p ⩾ 3. We also assume that
P is a bivariate polynomial function. The general case will be proved by induction
on the number of essential variables of P .

Proposition 12. The Main theorem is true when R is a field of characteristic zero
and P is a bivariate polynomial function.
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Proof. Let P be a bisymmetric bivariate polynomial function of degree p ⩾ 3. We
know that Pp is of the form Pp(x, y) = cxγ1yγ2 . If γ1 γ2 = 0, then by Claim 6 we
see that P is a univariate polynomial function, which corresponds to the class (i).

Conjugating P , if necessary, we may assume that Pp−1 = 0 (by Claim 10) and
it is then enough to prove that P = Pp (i.e., Pq = 0). If γ1 = 1 or γ2 = 1, then the
result follows immediately from Claim 8 since p − q ⩾ 2. We may therefore assume
that γ1 ⩾ 2 and γ2 ⩾ 2. We now prove that P = Pp in three steps.

Step 1. P (x, y) is of degree ⩽ γ1 in x and of degree ⩽ γ2 in y.

Proof. We prove by induction on r ∈ {0, . . . , p − 1} that Pp−r(x, y) is of degree ⩽ γ1
in x and of degree ⩽ γ2 in y. The result is true by our assumptions for r = 0
and r = 1 and is obvious for r = p. Considering Eq. (4) for d = p2 − r > p q, with
r1 = r2 = (x, y), we obtain

(13) [P (x, y)p]p2−r = [P (x,x)γ1 P (y, y)γ2]p2−r .
Clearly, the right-hand side of (13) is a polynomial function of degree ⩽ pγ1 in x
and ⩽ pγ2 in y. Using the multinomial theorem, the left-hand side of (13) becomes

[P (x, y)p]p2−r = [(
p

∑
k=0

Pp−k(x, y))
p

]
p2−r

= ∑
α∈Ap,r

(p
α
)

p

∏
k=0

Pp−k(x, y)αk ,

where

Ap,r = {α = (α0, . . . , αp) ∈ Np+1 ∶
p

∑
k=0

k αk = r, ∣α∣ = p}.

Observing that for every α ∈ Ap,r we have αk = 0 for k > r and αr /= 0 only if αr = 1
and α0 = p − 1, we can rewrite (13) as

pPp(x, y)p−1 Pp−r(x, y) = [P (x,x)γ1P (y, y)γ2]p2−r− ∑
α∈Ap,r

αr=⋯=αp=0

(p
α
)
r−1

∏
k=0

Pp−k(x, y)αk .

By induction hypothesis, the right-hand side is of degree ⩽ pγ1 in x and of degree
⩽ pγ2 in y. The result then follows by analyzing the highest degree terms in x and
y of the left-hand side. �

Step 2. P (x, y) factorizes into a product P (x, y) = U(x)V (y).

Proof. By Step 1, we can write

P (x, y) =
γ1

∑
k=0

xk Vk(y) ,

where Vk is of degree ⩽ γ2 and Vγ1(y) = ∑γ2j=0 cγ2−j yj , with c0 = c /= 0 and c1 = 0

(since Pp−1 = 0). Equating the terms of degree γ21 in z in the identity

P (P (z, t), P (x, y)) = P (P (z, x), P (t, y)) ,
we obtain

Vγ1(t)γ1 Vγ1(P (x, y)) = Vγ1(x)γ1 Vγ1(P (t, y)).
Equating now the terms of degree γ1γ2 in t in the latter identity, we obtain

(14) cγ1 Vγ1(P (x, y)) = cVγ1(x)γ1 Vγ1(y)γ2 .
We now show by induction on r ∈ {0, . . . , γ1} that every polynomial function Vγ1−r
is a multiple of Vγ1 (the case r = 0 is trivial), which is enough to prove the result.
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To do so, we equate the terms of degree γ1γ2 − r in x in (14) (by using the explicit
form of Vγ1 in the left-hand side). Note that terms with such a degree in x can
appear in the expansion of Vγ1(P (x, y)) only when P (x, y) is raised to the highest
power γ2 (taking into account the condition c1 = 0 when r = γ1). Thus, we obtain

cγ1+1 [(
γ1

∑
k=0

xγ1−k Vγ1−k(y))
γ2

]
γ1γ2−r

= c [Vγ1(x)γ1]γ1γ2−rVγ1(y)γ2 ,

(here the notation [⋅]γ1γ2−r concerns only the degree in x). By computing the left-
hand side (using the multinomial theorem as in the proof of Step 1) and using the
induction on r, we finally obtain an identity of the form

aVγ1(y)γ2−1 Vγ1−r(y) = a′ Vγ1(y)γ2 , a, a′ ∈R, a ≠ 0,

from which the result immediately follows. �

Step 3. U and V are monomial functions.

Proof. Using (14) with P (x, y) = U(x)V (y) and Vγ1 = V , we obtain

(15) cγ1
γ2

∑
j=0

cγ2−j (U(x)V (y))j = cV (x)γ1 V (y)γ2 .

Equating the terms of degree γ22 in y in (15), we obtain

(16) cγ1+γ2+1U(x)γ2 = cγ2+1 V (x)γ1 .
Therefore, (15) becomes

γ2−1

∑
j=0

cγ2−j (U(x)V (y))j = 0,

which obviously implies ck = 0 for k = 1, . . . , γ2, which in turn implies V (x) = cxγ2 .
Finally, from (16) we obtain U(x) = xγ1 . �

Steps 2 and 3 together show that P = Pp, which establishes the proposition. �

Recall that the action of the symmetric group Sn on functions from Rn to R is
defined by

σ(f)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)), σ ∈Sn.

It is clear that f is bisymmetric if and only if so is σ(f). We then have the following
fact.

Fact 13. The class of n-variable bisymmetric functions is stable under the action
of the symmetric group Sn.

Consider also the following action of identification of variables. For f ∶Rn → R
and i < j ∈ [n] we define the function Ii,jf ∶Rn−1 →R as

(Ii,jf)(x1, . . . , xn−1) = f(x1, . . . , xj−1, xi, xj , . . . , xn−1).
This action amounts to considering the restriction of f to the “subspace of equation
xi = xj” and then relabeling the variables. By Fact 13 it is enough to consider the
identification of the first and second variables, that is,

(I1,2f)(x1, . . . , xn−1) = f(x1, x1, x2 . . . , xn−1).
Proposition 14. The class of n-variable bisymmetric functions is stable under
identification of variables.
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Proof. To see that I1,2f is bisymmetric, it is enough to apply the bisymmetry of f
to the n × n matrix

⎛
⎜⎜⎜
⎝

x1,1 x1,1 ⋯ x1,n−1
x1,1 x1,1 ⋯ x1,n−1
⋮ ⋮ ⋱ ⋮

xn−1,1 xn−1,1 ⋯ xn−1,n−1

⎞
⎟⎟⎟
⎠
.

To see that Ii,jf is bisymmetric, we can similarly consider the matrix whose rows
i and j are identical and the same for the columns (or use Fact 13). �

We now prove the Main Theorem by using both a simple induction on the number
of essential variables of P and the action of identification of variables.

Proof of the Main Theorem when R is a field. We proceed by induction on the num-
ber of essential variables of P . By Proposition 12 the result holds when P depends
on 1 or 2 variables only. Let us assume that the result also holds when P depends
on n− 1 variables (n− 1 ⩾ 2) and let us prove that it still holds when P depends on
n variables. By Proposition 11 we may assume that P is of degree p ⩾ 3. We know
that Pp(x) = cxγ , where c ≠ 0 and γi > 0 for i = 1, . . . , n (cf. Claim 6). Up to a
conjugation we may assume that Pp−1 = 0 (cf. Claim 10). Therefore, we only need
to prove that P = Pp. Suppose on the contrary that P −Pp has a polynomial func-
tion Pq ≠ 0 as the homogeneous component of highest degree. Then the polynomial
function I1,2 P has n−1 essential variables, is bisymmetric (by Proposition 14), has
I1,2 Pp as the homogeneous component of highest degree (of degree p ⩾ 3), and has
no component of degree p−1. By induction hypothesis, I1,2 P is in class (iii) of the
Main Theorem with b = 0 (since it has no term of degree p− 1) and hence it should
be a monomial function. However, the polynomial function [I1,2 P ]q = I1,2 Pq is not
zero by (11), hence a contradiction. �

Proof of the Main Theorem when R is an integral domain. Using the identification
of polynomials and polynomial functions, we can extend every bisymmetric poly-
nomial function over an integral domain R with identity to a polynomial function
on Frac(R). The latter function is still bisymmetric since the bisymmetry prop-
erty for polynomial functions is defined by a set of polynomial equations on the
coefficients of the polynomial functions. Therefore, every bisymmetric polynomial
function over R is the restriction to R of a bisymmetric polynomial function over
Frac(R). We then conclude by using the Main Theorem for such functions. �
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