[en] Many transmission components contain moving parts, which can come into in contact. For example, the TORSEN differentials aremainly composed of gear pairs and thrust washers. The friction involved by contacts between these two parts is essential in the working principle of such differentials. In this chapter, two different contact models are presented and exploited for the modelling of differentials. The former uses an augmented Lagrangian technique or a penalty method and is defined between two flexible bodies or between a rigid body and a flexible structure. The second contact formulation is a continuous impact modelling based on a restitution coefficient.
Disciplines :
Mechanical engineering
Author, co-author :
Virlez, Geoffrey ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Bruls, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Poulet, Nicolas; JTEKT TORSEN Europe S.A.
Tromme, Emmanuel ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Duysinx, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Language :
English
Title :
Modelling of contact between stiff bodies in automotive transmission systems
Publication date :
2013
Main work title :
Multibody Dynamics: Computational Methods and Applications
Editor :
Fisette, Paul
Samin, Jean-Claude
Publisher :
Springer, Netherlands
ISBN/EAN :
978-94-007-5403-4
Collection name :
Computational Methods in Applied Sciences
Pages :
193-214
Peer reviewed :
Peer reviewed
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Acary, V., Brogliato, B., Numerical methods for nonsmooth dynamical systems (2008) Lect. Notes Appl. Comput. Mech., 35, p. 540
Arnold, M., Brüls, O., Convergence of the generalized-α scheme for constrained mechanical systems (2007) Multibody Syst. Dyn., 18 (2), pp. 185-202
Blundell, M., Harty, D., (2004) The Multibody Systems Approach to Vehicle Dynamics, , Elsevier Butterworth-Heinemann, Amsterdam
Cardona, A., Flexible three dimensional gear modelling (1995) Eur. J. Comput. Mech., 4 (5-6), pp. 663-691
Christensen, P., Klarbring, A., Pang, J., Strömberg, N., Formulation and comparison of algorithms for frictional contact problems (1998) Int. J. Numer. Methods Eng., 42, pp. 145-173
Chung, J., Hulbert, G., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method (1993) J. Appl. Mech., 60, pp. 371-375
Drab, C., Engl, H., Haslinger, J., Offner, G., Dynamic simulation of crankshaft multibody systems (2009) Multibody Syst. Dyn., 22, pp. 133-144
Fichera, G., Lacagnina, M., Petrone, F., Modelling of torsion beam rear suspension by using multibody method (2004) Multibody Syst. Dyn., 12, pp. 303-313
Géradin, M., Cardona, A., (2001) Flexible Multibody Dynamics, , Wiley, New York
Gonçalves, J.P., Ambrosio, J.A.C., Optimization of vehicle suspension systems for improved comfort of road vehicles using flexible multibody dynamics (2003) Nonlinear Dyn., 34, pp. 113-131
Hartmann, S., Ramm, E., A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers (2008) Finite Elem. Anal. Des., 44, pp. 245-258
Hjiaj, M., Feng, Z.Q., De La Saxcé, G., Mróz, Z., Three-dimensional finite element computations for frictional contact problems with non-associated sliding rule (2004) Int. J. Numer. Methods Eng., 60, pp. 2045-2076
Jean, M., The non-smooth contact dynamics method (1999) Comput. Methods Appl. Mech. Eng., 177, pp. 235-257
Kogut, L., Etsion, I., Elastic-plastic contact analysis of a sphere and a rigid flat (2002) J. Appl.Mech., 69, pp. 657-662
Lankarani, H., Nikravesh, P., Continuous contact force models for impact analysis in multibody analysis (1994) Nonlinear Dyn., 5, pp. 193-207
Lens, E., Cardona, A., A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained multibody systems dynamics (2008) Comput. Struct., 86, pp. 47-63
Ma, Z.D., Perkins, N.C., An efficient multibody dynamics model for internal combustion engine systems (2003) Multibody Syst. Dyn., 10, pp. 363-391
Potenza, R., Dunne, J., Vulli, S., Richardson, D., A model for simulating the instantaneous crank kinematics and total mechanical losses in a multicylinder in-line engine (2007) Int. J. Eng. Res., 8 (4), pp. 379-397
Puso, M., A 3d mortar method for solid mechanics (2004) Int. J. Numer. Methods Eng., 69, pp. 657-662
Seifried, R., Schiehlen, W., Eberhard, P., The role of the coefficient of restitution on impact problems in multi-body dynamics (2010) Proc. IMechE, Part K: J. Multi-body Dyn., 224, pp. 279-306
Stronge, W.J., (2000) Impact Mechanics, , Cambridge University Press, Cambridge
Virlez, G., Brüls, O., Poulet, N., Duysinx, P., Simulation of differentials in four-wheel drive vehicles using multibody dynamics (2011) Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011, , Washington, DC, USA, August 29-31
Yang, B., Laursen, T.A., A mortar-finite element approach to lubricated contact problems (2009) Comput. Methods Appl. Mech. Eng., 198, pp. 3656-3669
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.