Fermentation of date palm juice by curdlan gum production from Rhizobium radiobacter ATCC 6466 (TM): Purification, rheological and physico-chemical characterization
Ben Salah, Riadh; Jaouadi, Bassem; Bouaziz, Aminet al.
2011 • In LWT - Food Science and Technology, 44 (4), p. 1026-1034
Optimization; Curdlan gum; Fermentation; Date juice; Viscometry; Valorization
Abstract :
[en] The present study was undertaken to investigate the possibility of using date palm juice byproducts for curdlan production by Rhizobium radiobacter ATCC 6466(TM) in batch experiments. A number of operational parameters, namely pH value, temperature range, inoculum ratio, agitation speed, carbon concentration, nitrogen source, and fermentation time, were investigated in terms of their optimal values for as well as individual and synergistic effects on curdlan production. The findings indicated that the strain exhibited a high ability to use the natural substrate under investigation. A curdlan production yield of 22.83 g/l was obtained in 500-ml agitated flasks (50 ml) when the strain was cultivated in the optimal medium (pH, 7; ammonium sulphate concentration, 2 g/l; date glucose juice concentration, 120 g/l) operating at 30 degrees C with an inoculum ratio of 5 ml/100 ml, an agitation speed of 180 rpm, and a fermentation period of 51 h. The purified date byproducts-curdlan (DBP-curdlan) had a molecular weight of 180 kDa, a linear structure composed exclusively of beta-(1,3)-glucosidic linkages, a melting temperature (T(m)) and glass transition temperature (T(g)) of 1.24 and -3.55 degrees C. respectively. The average measured heights of its molecules were noted to fluctuate between 14.1 +/- 0.07 and 211.73 +/- 0.6 mu m. (C) 2010 Elsevier Ltd. All rights reserved.
Fermentation of date palm juice by curdlan gum production from Rhizobium radiobacter ATCC 6466 (TM): Purification, rheological and physico-chemical characterization
AOAC Official Methods of Analyses 1990, Association of Official Analytical Chemist, Washington, DC.
Arocas A., Sanz T., Fiszman S.M. Improving effect of xanthan and locust bean gums on the freeze-thaw stability of white sauces made with different native starches. Food Hydrocolloids 2009, 23:2478-2484.
Ben Salah, R., Besbes, S., Chaari, K., Attia, H., Deroanne, C., & Blecker, C. Production of xanthan gum from Xanthomonas campestris NRRL B-1459 by fermentation of date juice palm by-products (Phoenix dactylifera L.). Journal of Food Process Engineering, in press. doi:10.1111/j.1745-4530.2009.00369.x.
Ben Salah R., Besbes S., Chaari K., Blecker C., Derrouane C., Attia H. Rheological and physical properties of date juice palm by-products (Phoenix dactylifera L.) and commercial xanthan gums. Journal of Texture Studies 2010, 41:125-138.
Ben Salah R., Ktari N., Chaari K., Besbes S., Blecker C., Deroanne C., Attia H. Optimization of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chemistry 2010, 121:627-633.
Besbes S., Cheikh Rouhou S., Blecker C., Derouanne C., Lognay G., Drira N.E. Voies de valorisation des sous produits de dattes: Valorisation de la pulpe. Microbiologie Hygiène Alimentaire 2006, 18:3-7.
Besbes S., Drira L., Blecker C., Derouanne C., Attia H. Adding value to hard date (Phoenix dactylifera L.): compositional, functional and sensory characteristics of date jam. Food Chemistry 2009, 112:406-411.
Besbes S., Hentati B., Blecker C., Derouanne C., Lognay G., Drira N.E. Voies de valorisation des sous produits de dattes: Valorisation du noyau. Microbiologie Hygiène Alimentaire 2005, 18:3-11.
Delattre C., Rios L., Laroche C., Le N.H., Lecerf D., Picton L., et al. Production and characterization of new families of polyglucuronic acids from TEMPO-NaOCl oxidation of curdlan. International Journal of Biological Macromolcules 2009, 45:458-462.
FAOSTAT (2005). Rome: Food and Agriculture Organization of the United Nations.
Funami T., Nishinari K. Gelling characteristics of curdlan aqueous dispersions in the presence of salts. Food Hydrocolloids 2007, 21:59-65.
Garcia-Ochoa F., Santos V.E., Casas J.A., Gomez E. Xanthan gum: production, recovery, and properties. Biotechnology Advences 2000, 18:549-579.
Harada T., Fujimori K., Hirose S., Masada M. Growth and β-glucan 10C3K production by a mutant of Alcaligenes faecalis var. myxogenes in defined medium. Agricalture Biology and Chemistry 1966, 30:764-769.
Haze A., Yamamoto Y., Miyanagi K., Uchida S. Preparation of a segregation-reducing agent for hydraulic compositions. European Patent 1994, 588-665.
Jin L.H., Um H.J., Yin C.J., Kim Y.H., Lee J.H. Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. Journal of Biotechnology 2008, 138:80-87.
Jin Y., Zhang H., Yin Y., Nishinari K. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM. Carbohydrate Research 2006, 341:90-99.
Kim M.K., Lee I.Y., Ko J.H., Rhee Y.H., Park Y.H. Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnolgy and Bioengineering 1999, 62:317-323.
Kim M.K., Ryu K.E., Choi W.A., Rhee Y.H., Lee I.Y. Enhanced production of (1→3)-[beta]-glucan by a mutant strain of Agrobacterium species. Biochemical Engineering Journal 2003, 16:163-168.
Lee J.H., Lee I.Y., Kim M.K., Park Y.H. Optimal pH control of batch processes for production of curdlan by Agrobacterium species. Journal of Industrial Microbiology and Biotechnology 1999, 23:143-148.
Liu J., Luo J., Ye H., Sun Y., Lu Z., Zeng X. Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydrate Polymers 2010, 79:206-213.
Lôpez M.J., Vargas-Garcia M.C., Suarez-Estrella F., Moreno J. Properties of xanthan obtained from agricultural wastes acid hydrolysates. Journal of Food Engineering 2004, 63:111-115.
McKellar R.C., Van Geest J., Cui W. Influence of culture and environmental conditions on the composition of exopolysaccharide produced by Agrobacterium radiobacter. Food Hydrocolloids 2003, 17:429-437.
Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 1959, 31:426-428.
Moon C.J., Lee J.H. Use of curdlan and activated carbon composed adsorbents for heavy metal removal. Process Biochemistry 2005, 40:1279-1283.
Nakata M., Kawaguchi T., Kodama Y., Konno A. Characterization of curdlan in aqueous sodium hydroxide. Polymer 1998, 39:1475-1481.
Saudagar P.S., Singhal R.S. Fermentative production of curdlan. Applied Biochemistry and Biotechnology 2004, 118:21-31.
Shatwell K.P., Sutherland I.W., Ross-Murphy S.B. Influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide. Physical networks 1990, 315-334. Elsevier, Amsterdam. W. Burchard, S.B. Ross-Murphy (Eds.).
Shih I.L., Yu J.Y.C.H., Wu J.Y. Production and characterization of curdlan by Agrobacterium sp. Biochemistry Engineering 2009, 43:33-40.
Simi C.K., Abraham T.E. Transparent xyloglucan-chitosan complex hydrogels for different applications. Food Hydrocolloids 2010, 24:72-80.
Ssaki T., Abiko N., Sugino Y., Nitta K. Dependence on chain length of antitumor activity of (1→3)-β-glucan from Alcaligenes faecalis var. myxogenes, IFO 13140, and its acid-degraded products. Cancer Research 1978, 38:379-383.
Takeda-Hirokawa N., Neoh L.P., Akimoto H., Kaneko H., Hishikawa T., Sekigawa I., et al. Role of curdlan sulfate in the binding of HIV-1 gp120 to CD4 molecules and the production of gp120-mediated TNF-alpha. Microbiological and Immunology 1997, 41:741-745.
Triveni R., Shamala T.R., Rastogi N.K. Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry 2001, 36:787-795.
West T.P. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749. Journal of Basic Microbiology 2009, 49:589-592.
Wu J., Zhan X., Liu H., Zheng Z. Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation. Chinese Journal of Biotechnology 2008, 24:1035-1039.
Zhang H., Nishinari K. Characterization of the conformation and comparison of shear and extensional properties of curdlan in DMSO. Food Hydrocolloids 2009, 23:1570-1578.