Poster (Scientific congresses and symposiums)
Supervised learning to tune simulated annealing for in silico protein structure prediction
Marcos Alvarez, Alejandro
2012Bridging statistical physics and optimization, inference and learning
 

Files


Full Text
poster.pdf
Author preprint (1.16 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Optimization; Machine learning; Simulated annealing; Protein; Structure prediction
Abstract :
[en] Simulated annealing is a widely used stochastic optimization algorithm whose efficiency essentially depends on the proposal distribution used to generate the next search state at each step. We propose to adapt this distribution to a family of parametric optimization problems by using supervised machine learning on a sample of search states derived from a set of typical runs of the algorithm over this family. We apply this idea in the context of in silico protein structure prediction.
Research Center/Unit :
Systems and Modeling
Disciplines :
Computer science
Author, co-author :
Marcos Alvarez, Alejandro ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Supervised learning to tune simulated annealing for in silico protein structure prediction
Publication date :
21 February 2012
Number of pages :
A0
Event name :
Bridging statistical physics and optimization, inference and learning
Event organizer :
Ecole de Physique des Houches
Event place :
Les Houches, France
Event date :
from 19-02-2012 to 24-02-2012
Audience :
International
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 25 April 2012

Statistics


Number of views
154 (28 by ULiège)
Number of downloads
138 (17 by ULiège)

Bibliography


Similar publications



Contact ORBi