

SUPERVISED LEARNING TO TUNE SIMULATED ANNEALING FOR IN SILICO PROTEIN STRUCTURE PREDICTION

Alejandro Marcos Alvarez, Francis Maes and Louis Wehenkel
 Department of Electrical Engineering and Computer Science - University of Liège, Belgium
 Contact information: amarcos@ulg.ac.be, <http://www.montefiore.ulg.ac.be/~ama/>

Simulated annealing is a widely used stochastic optimization algorithm whose efficiency essentially depends on the proposal distribution used to generate the next search state at each step. We propose to adapt this distribution to a family of **parametric optimization** problems by using **supervised machine learning** on a sample of search states derived from a set of typical runs of the algorithm over this family. We apply this idea in the context of *in silico* protein structure prediction.

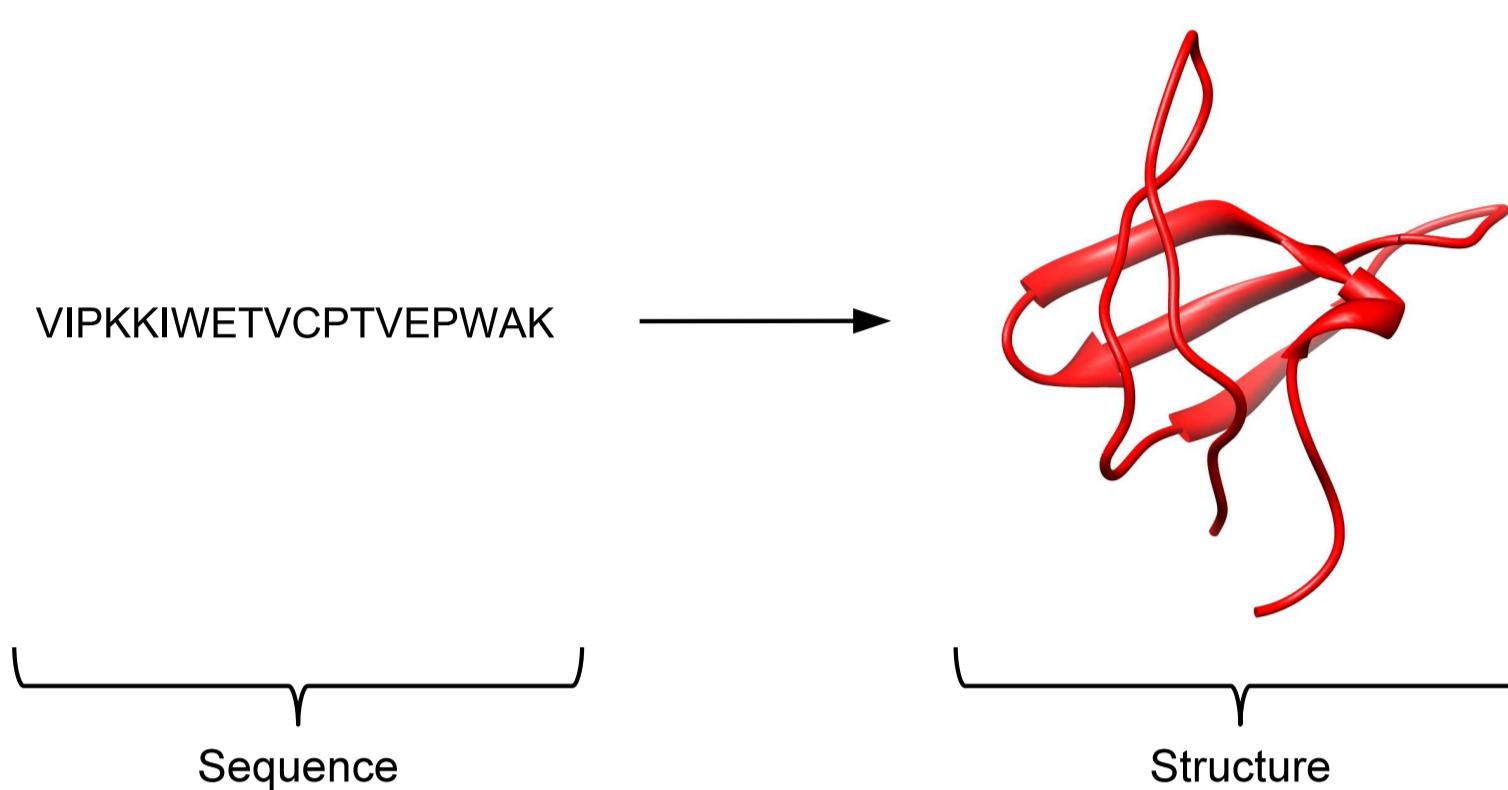
Motivation

Protein structure prediction is a **topical** and **challenging open problem** in bioinformatics. The significance of this problem is due to the importance of studying protein structures in biomedical research in order to **improve our understanding** of the human physiology and to accelerate **drug design** processes.

The most reliable way to determine protein structures is to use **experimental methods** such as X-ray crystallography or NMR spectroscopy, which are however **expensive** and **time consuming**, and hence the design of *in silico* protein structure prediction methods has become a very active research field.

General problem statement

The problem we are considering is ***in silico* protein structure prediction**, which amounts to predicting the 3D coordinates of each atom in the protein given its amino acid sequence.



Characteristics

- modeled as a parametric optimization problem parameterized by λ
 - high-dimensional for usefully sized proteins;
 - $\lambda \equiv$ the amino acid sequence of the protein;
 - $s_\lambda \equiv$ current state (structure) of the protein.
- cost function \equiv the energy function \mathcal{E} of the protein
 - large number of local minima;
 - global minimum of \mathcal{E} corresponds to the sought structure;
 - \mathcal{E} includes all constraints;
 - evaluating \mathcal{E} can be long.
- optimization algorithm \equiv simulated annealing (SA) [4]
 - proteins-specific operators $o \in \mathcal{O}$ used to modify the structure.

Optimization algorithm

ALGORITHM 1: Simulated annealing

Let B be a budget of iterations, $\mathcal{E}(\cdot)$ the oracle evaluating the energy and $T(i)$ a non increasing cooling schedule defined over $\{1, \dots, B\}$.
Input: λ the problem instance, \mathcal{S}_λ its solution space, $s^0 \in \mathcal{S}_\lambda$ the chosen initial state, $p(o)$ is a proposal distribution used to sample operators

```

1:  $s = s^0$ ;
2:  $e = \mathcal{E}(s^0)$ ;
3: for  $i = 1 \dots B$  do
4:   propose  $o \in \mathcal{O}$  s.t.  $o \sim p(o)$ ;
5:    $s' = o(s)$ ;
6:    $e' = \mathcal{E}(s')$ ;
7:   with probability  $\min\left(1, \exp\left(\frac{e-e'}{kT(i)}\right)\right)$  do
8:      $s = s'$ ;
9:      $e = e'$ ;
10:   end
11: end for
12: return  $s$ 
  
```

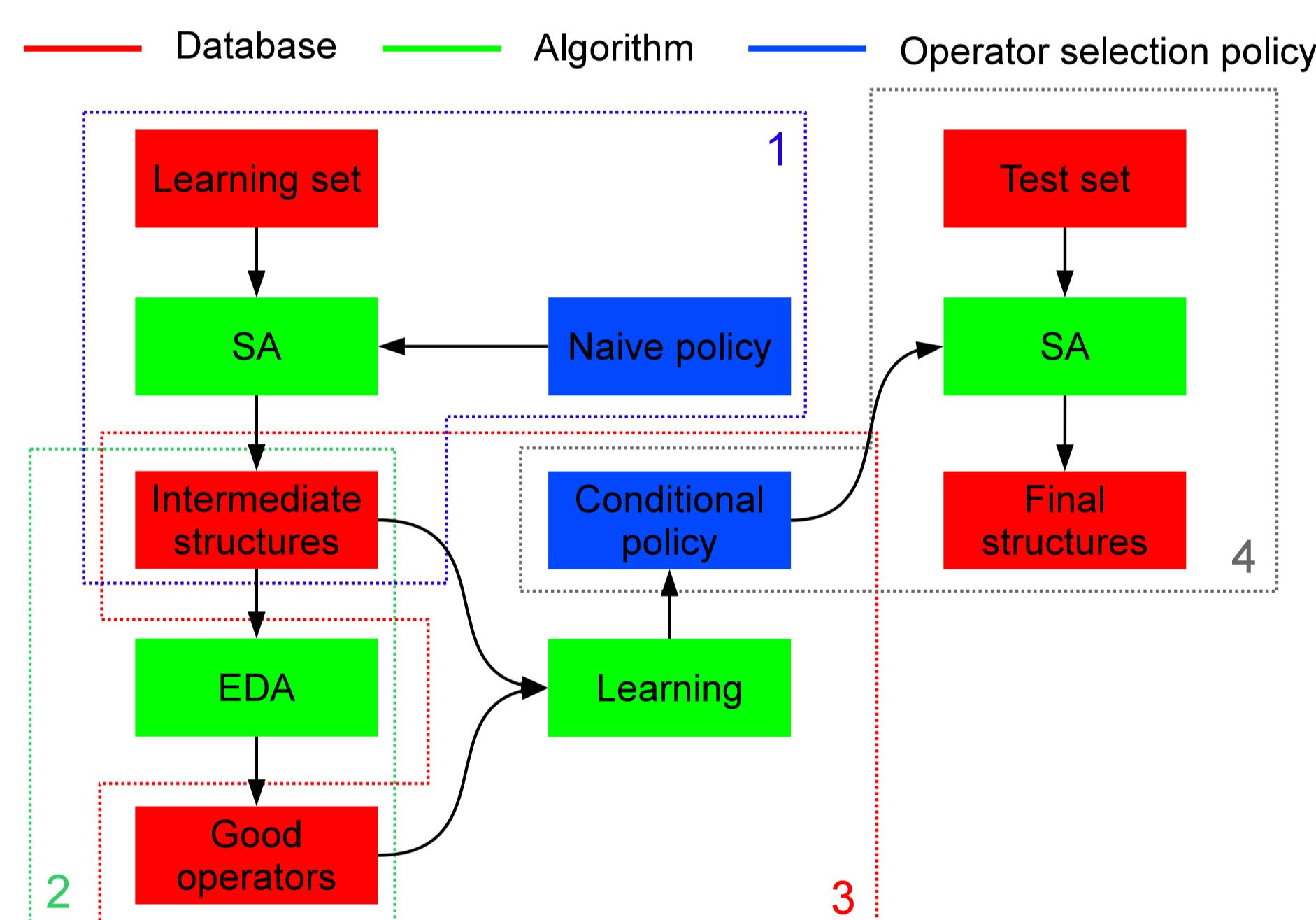
Supervised learning based framework

Observations

SA's efficiency critically depends on $p(o)$ (naive policy) !

What we are going to do

Use supervised machine learning to create a conditional probability distribution $p(o | s)$ (conditional policy) and use it instead of $p(o)$.

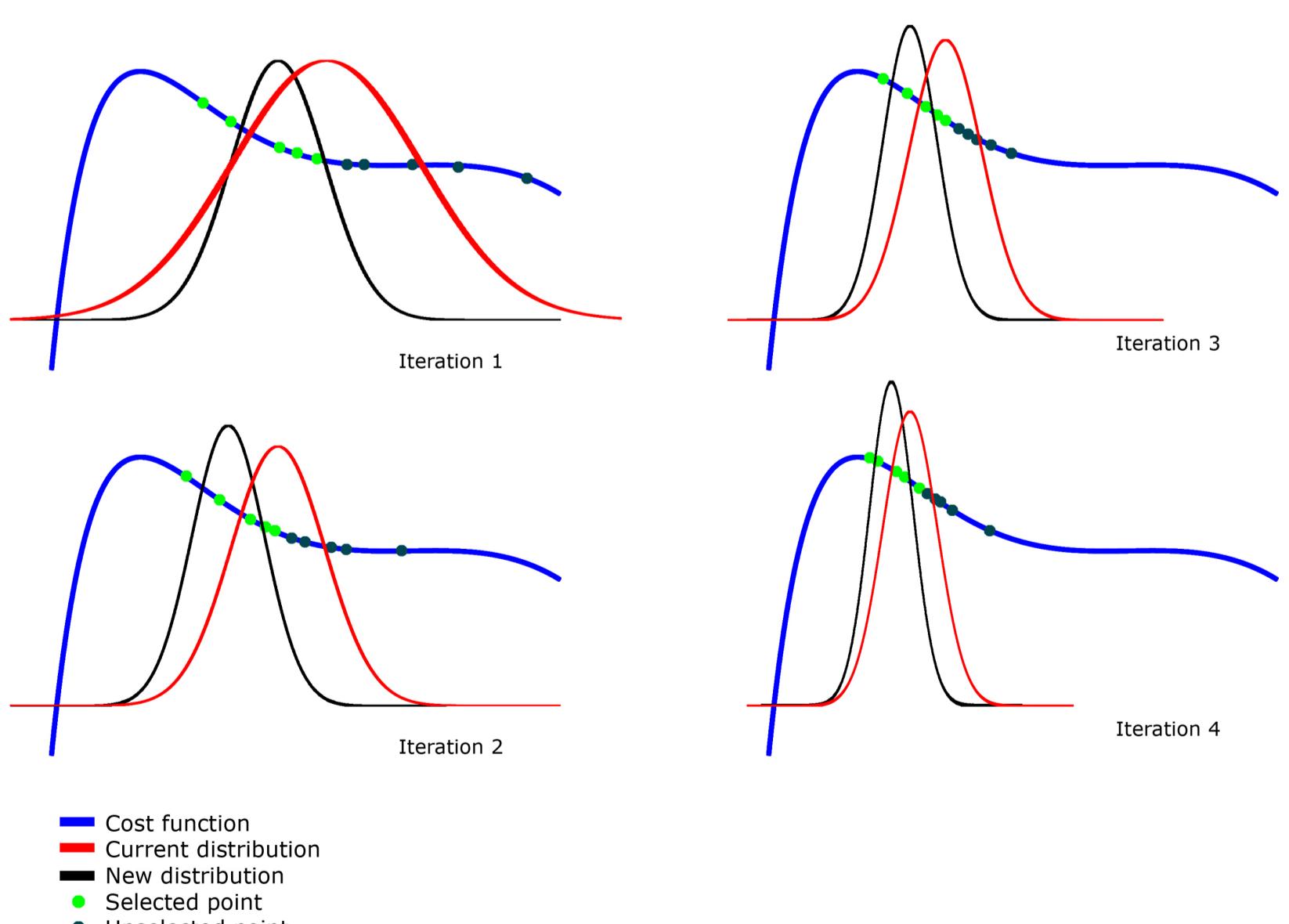


Conditional distribution

- discrete parameters: maximum-entropy classifier [2];
- continuous parameters:

$$\begin{aligned} \mu &= \langle \theta_\mu; \phi(s_\lambda) \rangle; \\ \sigma &= \log \{1 + \exp(-\langle \theta_\sigma; \phi(s_\lambda) \rangle)\}; \\ p_\theta(\gamma | \phi(s_\lambda)) &\sim \mathcal{N}_\theta(\mu, \sigma). \end{aligned}$$

Estimation of distribution algorithm (EDA)



Results

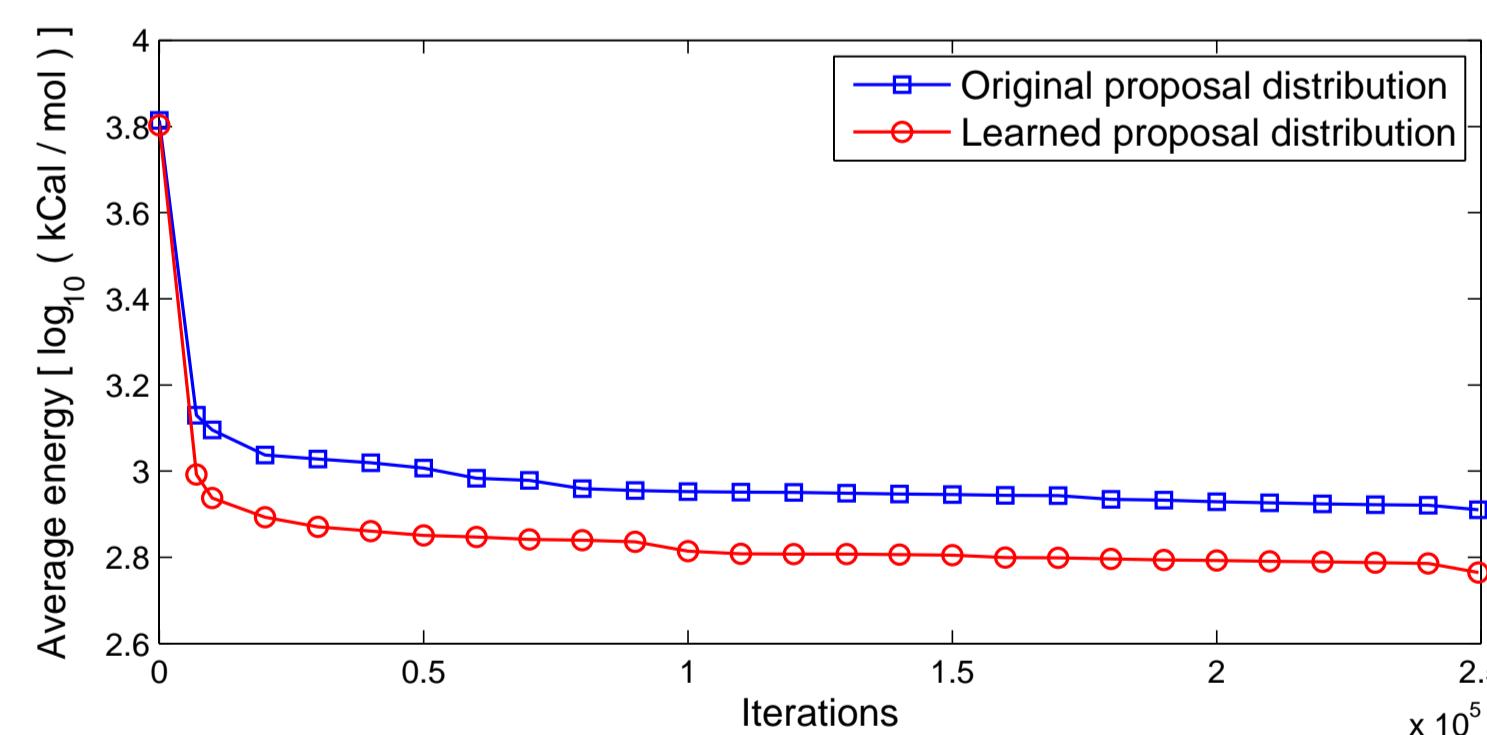


FIGURE 1: Evolution of average energy of the test set proteins during one optimization run.

- The learning set is composed of 100 proteins randomly selected from the database PSIPRED [3].
- The test set is composed of 10 proteins randomly selected from the database PSIPRED [3].
- The parameters of SA were determined by a rule of thumb based on what can be found in official Rosetta tutorials (more details in [1]).
- The learned conditional distribution outperforms the other one in terms of **convergence speed** and of **final result**.
- These results are promising but the structures predicted after one such learning iteration are still very different from the real structures.

Conclusions and future work

Improvement

Machine learning can improve optimization performance.

Promising results

In the context of *in silico* protein structure prediction.

Learning for search

Learning a good way to search through the state space of a problem.

General

Can be applied to other optimization problems and search methods.

Local vs global information

Better efficiency may be expected if learning could take into account *global* information (in this work, *local* information is used).

Future work includes

- optimization: fine tuning of parameters, other algorithms;
- learning: improvement of features and model selection.

References

- A. Marcos Alvarez. Prédiction de structures de macromolécules par apprentissage automatique. Master's thesis, University of Liège, Faculty of Engineering, 2011.
- A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A maximum entropy approach to natural language processing. *Computational linguistics*, 22(1):39–71, 1996.
- D. T. Jones. Protein secondary structure prediction based on position-specific scoring matrices. *Journal of Molecular Biology*, 292(2):195 – 202, 1999.
- S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. *Science, New Series*, 220(4598):671–680, 1983.
- P. Larrañaga and J. A. Lozano. *Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation*. Springer, October 2002.